Xinle Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/357652/publications.pdf Version: 2024-02-01

YINDE LI

#	Article	IF	CITATIONS
1	Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation. ACS Catalysis, 2014, 4, 1340-1348.	5.5	367
2	Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nature Communications, 2018, 9, 2785.	5.8	353
3	Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nature Communications, 2018, 9, 2998.	5.8	334
4	Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction. Journal of the American Chemical Society, 2017, 139, 4762-4768.	6.6	265
5	Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks. ACS Catalysis, 2014, 4, 3490-3497.	5.5	187
6	Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks. ACS Catalysis, 2016, 6, 3461-3468.	5.5	152
7	Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.	5.8	123
8	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	1.9	112
9	Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.	5.2	97
10	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	5.0	94
11	Impact of Linker Engineering on the Catalytic Activity of Metal–Organic Frameworks Containing Pd(II)–Bipyridine Complexes. ACS Catalysis, 2016, 6, 6324-6328.	5.5	89
12	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16371-16375.	7.2	87
13	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
14	Metal–Organicâ€Frameworkâ€Derived Carbons: Applications as Solidâ€Base Catalyst and Support for Pd Nanoparticles in Tandem Catalysis. Chemistry - A European Journal, 2017, 23, 4266-4270.	1.7	66
15	sp ² carbon-conjugated covalent organic frameworks: synthesis, properties, and applications. Materials Chemistry Frontiers, 2021, 5, 2931-2949.	3.2	58
16	Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework Films. ACS Applied Materials & Interfaces, 2020, 12, 51837-51845.	4.0	57
17	Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes. Journal of Catalysis, 2017, 356, 307-314.	3.1	53
18	Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6186-6192.	5.2	50

Xinle Li

#	Article	IF	CITATIONS
19	Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Research, 2018, 11, 3469-3479.	5.8	46
20	A Three-Dimensional Microporous Metal–Metalloporphyrin Framework. Inorganic Chemistry, 2015, 54, 200-204.	1.9	42
21	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	6.6	42
22	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
23	Use of alcohols as reducing agents for synthesis of well-defined polymers by AGET-ATRP. Chemical Communications, 2012, 48, 2800.	2.2	38
24	Highâ€Temperatureâ€Stable and Regenerable Catalysts: Platinum Nanoparticles in Aligned Mesoporous Silica Wells. ChemSusChem, 2013, 6, 1915-1922.	3.6	34
25	Polymer–Covalent Organic Frameworks Composites for Glucose and pH Dualâ€Responsive Insulin Delivery in Mice. Advanced Healthcare Materials, 2020, 9, e2000221.	3.9	34
26	Facile and Site-Selective Synthesis of an Amine-Functionalized Covalent Organic Framework. ACS Macro Letters, 2021, 10, 1590-1596.	2.3	32
27	Cooperative Multifunctional Catalysts for Nitrone Synthesis: Platinum Nanoclusters in Amineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 16589-16593.	1.6	30
28	Aluminum-Induced Interfacial Strengthening in Calcium Silicate Hydrates: Structure, Bonding, and Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 2622-2631.	3.2	28
29	In situ TEM observation of calcium silicate hydrate nanostructure at high temperatures. Cement and Concrete Research, 2021, 149, 106579.	4.6	28
30	Green synthesis of amphiphilic carbon dots from organic solvents: application in fluorescent polymer composites and bio-imaging. RSC Advances, 2018, 8, 12556-12561.	1.7	26
31	MOF-253-Pd(OAc) ₂ : a recyclable MOF for transition-metal catalysis in water. RSC Advances, 2016, 6, 56330-56334.	1.7	22
32	Design and fabrication of polyaniline/Bi ₂ MoO ₆ nanocomposites for enhanced visible-light-driven photocatalysis. New Journal of Chemistry, 2019, 43, 9606-9613.	1.4	22
33	Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties. Composites Science and Technology, 2018, 165, 388-396.	3.8	21
34	Unveiling the Effects of Linker Substitution in Suzuki Coupling with Palladium Nanoparticles in Metal–Organic Frameworks. Catalysis Letters, 2018, 148, 940-945.	1.4	19
35	Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations. ACS Applied Materials & amp; Interfaces, 2020, 12, 16922-16929.	4.0	19
36	Synthesis of Monodisperse Palladium Nanoclusters Using Metal–Organic Frameworks as Sacrificial Templates. ChemNanoMat, 2016, 2, 810-815.	1.5	18

Xinle Li

#	Article	IF	CITATIONS
37	Influence of Sn on Stability and Selectivity of Pt–Sn@UiO-66-NH ₂ in Furfural Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 17495-17501.	1.8	16
38	Stable hydrazone-linked chiral covalent organic frameworks: Synthesis, modiffation, and chiral signal inversion from monomers. Chinese Chemical Letters, 2021, 32, 107-112.	4.8	15
39	Green synthesis of bismuth sulfide nanostructures with tunable morphologies and robust photoelectrochemical performance. CrystEngComm, 2019, 21, 1474-1481.	1.3	14
40	Transformation of a Hydrazone-Linked Covalent Organic Framework into a Highly Stable Hydrazide-Linked One. ACS Applied Polymer Materials, 2022, 4, 4624-4631.	2.0	13
41	Nanoengineering Microstructure of Hybrid C–S–H/Silicene Gel. ACS Applied Materials & Interfaces, 2020, 12, 17806-17814.	4.0	11
42	Tandem Synthesis of ϵ aprolactam from Cyclohexanone by an Acidified Metalâ€organic Framework. ChemCatChem, 2021, 13, 3084-3089.	1.8	3