
Massimiliano Lanzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3576412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers. Macromolecules, 2017, 50, 4972-4981.	2.2	112
2	Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules, 2018, 19, 4147-4167.	2.6	81
3	Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 54328-54342.	4.0	78
4	Solvatochromic properties of poly[3-(6-methoxyhexyl)-2,5-thienylene] in different solvent mixtures. Synthetic Metals, 1997, 89, 181-186.	2.1	71
5	Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes. Journal of Physical Chemistry C, 2016, 120, 1871-1880.	1.5	65
6	Ester-functionalized poly(3-alkylthienylene)s: substituent effects on the polymerization with FeCl3. Synthetic Metals, 1995, 75, 141-147.	2.1	47
7	Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules, 2021, 22, 3084-3098.	2.6	46
8	Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus. Journal of Hazardous Materials, 2016, 309, 202-209.	6.5	39
9	Î-Stacking Signature in NMR Solution Spectra of Thiophene-Based Conjugated Polymers. ACS Omega, 2017, 2, 5775-5784.	1.6	35
10	New photoactive oligo- and poly-alkylthiophenes. Polymer, 2008, 49, 4942-4948.	1.8	33
11	Novel poly($3,3a\in^3$ - and $3a\in^2$, $4a\in^2$ -dialkyl-2, $2a\in^2:5a\in^2$, $2a\in^3$ - terthiophene)s by chemical oxidative synthesis: ev new step towards the optimization of this process. Polymer, 1996, 37, 661-665.	idence for	a ₃₂
12	New nitrogenâ€rich heterocycles for organoâ€modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polymer Engineering and Science, 2017, 57, 621-630.	1.5	31
13	Study of a thiophene-based polymer for optoelectronic applications. Thin Solid Films, 2006, 497, 16-19.	0.8	29
14	Electrospun poly(3-hexylthiophene)/poly(ethylene oxide)/graphene oxide composite nanofibers: effects of graphene oxide reduction. Polymers for Advanced Technologies, 2016, 27, 1465-1475.	1.6	29
15	Facile Synthesis of Soluble Multifunctional Polyalkylthiophenes. Macromolecular Rapid Communications, 2002, 23, 630.	2.0	28
16	New 3-alkylthiophene copolymers functionalized with a NLO chromophore. Synthetic Metals, 2001, 124, 467-470.	2.1	26
17	Synthesis, characterization and photovoltaic properties of a new thiophene-based double-cable polymer with pendent fullerene group. Polymer, 2012, 53, 2134-2145.	1.8	26
18	Low band gap polymers for application in solar cells: synthesis and characterization of thienothiophene–thiophene copolymers. Polymer Chemistry, 2014, 5, 2391.	1.9	25

#	Article	IF	CITATIONS
19	Monomers of 3-alkyl-substituted thiophene: synthetic routes for the functionalization with non-linear optical chromophores. Synthetic Metals, 2003, 138, 409-417.	2.1	24
20	New regioregular polythiophenes functionalized with sulfur-containing substituents for bulk heterojunction solar cells. Reactive and Functional Polymers, 2010, 70, 346-360.	2.0	24
21	Enhanced efficiency in hollow core electrospun nanofiber-based organic solar cells. Scientific Reports, 2021, 11, 21144.	1.6	24
22	Polymerization of cysteine functionalized thiophenes. Polymer, 2005, 46, 3588-3596.	1.8	23
23	Thermoplasmonicâ€Activated Hydrogel Based Dynamic Light Attenuator. Advanced Optical Materials, 2020, 8, 2000324.	3.6	23
24	Optical characterization of alkyl-thiophenic monomers functionalized with second-order nonlinear chromophores. Chemical Physics Letters, 2001, 343, 205-211.	1.2	22
25	Investigation on Different Procedures in the Oxidative Copolymerization of a Dye-Functionalized Thiophene with 3-Hexylthiophene. Macromolecules, 2003, 36, 8617-8620.	2.2	22
26	Organic- and Water-Soluble Aminoalkylsulfanyl Polythiophenes. Macromolecules, 2008, 41, 3785-3792.	2.2	22
27	Side chain porphyrin moiety linked to polymer-fullerene composite solar cell. Reactive and Functional Polymers, 2013, 73, 1198-1206.	2.0	21
28	Synthesis, characterization and optical properties of a regioregular and soluble poly[3-(10-hydroxydecyl)-2,5-thienylene]. Polymer, 2003, 44, 535-545.	1.8	20
29	Electrodeposition of PEDOT perchlorate as an alternative route to PEDOT:PSS for the development of bulk heterojunction solar cells. Journal of Solid State Electrochemistry, 2015, 19, 1685-1693.	1.2	20
30	Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication. PLoS ONE, 2016, 11, e0152915.	1.1	20
31	Preparation and characterization of thiophene copolymers with second order non-linear optical properties. European Polymer Journal, 2005, 41, 2360-2369.	2.6	19
32	Nanoscale Characterization and Unexpected Photovoltaic Behavior of Low Band Gap Sulfur-Overrich-Thiophene/Benzothiadiazole Decamers and Polymers. Journal of Physical Chemistry C, 2015, 119, 27200-27211.	1.5	19
33	A regioregular polythiophene–fullerene for polymeric solar cells. Journal of Applied Polymer Science, 2015, 132, .	1.3	19
34	Analysis of UV–Vis spectral profiles of solvatochromic poly[3-(10-hydroxydecyl)-2,5-thienylene]. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2002, 58, 583-592.	2.0	18
35	Novel regioregular polythiophenes containing side-chain porphyrin groups for polymeric photovoltaic cells. Materials Chemistry and Physics, 2014, 146, 464-471.	2.0	18
36	Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites. Fibers and Polymers, 2015, 16, 426-433.	1.1	18

#	Article	IF	CITATIONS
37	Reprint of "Extracellular production of tellurium nanoparticles by the photosynthetic bacterium Rhodobacter capsulatus― Journal of Hazardous Materials, 2017, 324, 31-38.	6.5	18
38	Effect of the incorporation of an Ag nanoparticle interlayer on the photovoltaic performance of green bulk heterojunction water-soluble polythiophene solar cells. Polymer, 2018, 149, 273-285.	1.8	18
39	Anomalous Solvatochromic Effect. Comparison Between Decyl and ω-Hydroxydecyl 3-Substituted Polythiophenes. Macromolecular Chemistry and Physics, 2001, 202, 1917-1923.	1.1	17
40	Electrospun Polyaniline-Based Composite Nanofibers: Tuning the Electrical Conductivity by Tailoring the Structure of Thiol-Protected Metal Nanoparticles. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	17
41	Single-material organic solar cells with fully conjugated electron-donor alkoxy-substituted bithiophene units and electron-acceptor benzothiadiazole moieties alternating in the main chain. Journal of Materials Chemistry C, 2020, 8, 4124-4132.	2.7	17
42	EQCM Characterization of some substituted polyterthiophenes. Electrochimica Acta, 1999, 44, 1911-1917.	2.6	16
43	Spectroscopic comparison between poly[3-(6-methoxyhexyl)thiophene]s with different steric hindrance. Synthetic Metals, 1999, 104, 1-7.	2.1	16
44	Straightforward synthesis of well-defined poly(vinyl acetate) and its block copolymers by atom transfer radical polymerization. European Polymer Journal, 2016, 77, 75-87.	2.6	16
45	Bulk Heterojunction Solar Cells: The Role of Alkyl Side Chain on Nanoscale Morphology of Sulfur Over-rich Regioregular Polythiophene/Fullerene Blends. Journal of Physical Chemistry C, 2018, 122, 4156-4164.	1.5	16
46	Synthesis and characterization of neutral newly substituted polyalkylthiophenes. Polymer, 2000, 41, 3147-3157.	1.8	15
47	Solvent and temperature effects on the chromic behaviour of poly[3-(10-hydroxydecyl)-2,5-thienylene]. Synthetic Metals, 2001, 122, 267-273.	2.1	15
48	Highly processable ester-functionalized polythiophenes as valuable multifunctional and post-functionalizable conjugated polymers. European Polymer Journal, 2007, 43, 72-83.	2.6	15
49	(Alkylsulfanyl)bithiopheneâ€ <i>alt</i> â€Fluorene: Ï€â€Conjugated Polymers for Organic Solar Cells. European Journal of Organic Chemistry, 2011, 2011, 5659-5667.	1.2	15
50	Water-soluble polythiophenes as efficient charge-transport layers for the improvement of photovoltaic performance in bulk heterojunction polymeric solar cells. European Polymer Journal, 2017, 97, 378-388.	2.6	15
51	Regiochemistry characterization of poly(3-hexanoyloxyethyl-2,5-thienylene) through proton and carbon nuclear magnetic resonance spectroscopy. Polymer, 1997, 38, 1297-1302.	1.8	14
52	Synthesis and polymerization of a new thiophene functionalized with both NLO-active chromophore and an alkylic self-plastifying chain. European Polymer Journal, 2004, 40, 2117-2127.	2.6	14
53	Completely Soluble Azo-Dye-Substituted Thiophenic Copolymers through Proper Molecular Design. Macromolecules, 2005, 38, 3170-3175.	2.2	13
54	Tuning of the electronic properties of self-assembling and highly sensitive chromic polyalkylthiophenes. European Polymer Journal, 2007, 43, 835-846.	2.6	12

#	Article	IF	CITATIONS
55	Electrochemical synthesis and characterization of poly[3-(ω-bromoalkyl)thiophene]s. Electrochimica Acta, 2007, 52, 4087-4091.	2.6	12
56	Synthesis by post-polymerization functionalization of sensitive polythiophenes for selective chemo-recognition purposes. Reactive and Functional Polymers, 2007, 67, 329-340.	2.0	12
57	Novel Polymers with Inherent Conductivity and Enhanced Secondâ€Order NLO Activity. Macromolecular Chemistry and Physics, 2008, 209, 375-384.	1.1	11
58	Title is missing!. Acta Polymerica, 1997, 48, 251-255.	1.3	10
59	A new polythiophene derivative with highly sensitive and selective affinitychromism properties. Synthetic Metals, 2007, 157, 719-725.	2.1	10
60	New Thiophene Monolayer-Protected Copper Nanoparticles: Synthesis and Chemical-Physical Characterization. Journal of Nanomaterials, 2008, 2008, 1-6.	1.5	10
61	New photosetting NLO-active polythiophenes with enhanced optical stability. European Polymer Journal, 2009, 45, 1118-1126.	2.6	10
62	Versatile Synthesis of Soluble Multifunctional Thiophene Copolymers with NLO Activity. Macromolecular Chemistry and Physics, 2003, 204, 1982-1988.	1.1	9
63	Is bond stretch isomerism in mononuclear transition metal complexes a real issue? The misleading case of the MoCl ₅ /tetrahydropyran reaction system. Dalton Transactions, 2015, 44, 12653-12659.	1.6	9
64	Effect of Photocrosslinking of Dâ€A Thiophene Copolymers on the Performance of Singleâ€Material Solar Cells. Macromolecular Chemistry and Physics, 2020, 221, 1900433.	1.1	9
65	Chromic effects in poly(3-(10-hexanoyloxydecyl)-2,5-thienylene) as precursor of ï‰-hydroxydecyl-functionalized polythiophen. Polymers for Advanced Technologies, 1998, 9, 334-339.	1.6	8
66	Study of the order-disorder transitions in methoxy-functionalized polyalkylthiophenes. European Polymer Journal, 2008, 44, 3987-3996.	2.6	8
67	Synthesis of new methoxy-functionalized polythiophenes for charge transport in organic solar cells. Reactive and Functional Polymers, 2011, 71, 745-755.	2.0	8
68	Novel porphyrin-containing regioregular poly(alkylthiophene) copolymers tested as polymeric solar cells. Polymer, 2016, 97, 314-322.	1.8	8
69	Poly[3-hexyl-4-(6-bromohexyl)thiophene]: a key-intermediate for the synthesis of self-plastifying multifunctional polythiophenes. Polymer, 2004, 45, 8629-8637.	1.8	7
70	Synthesis, characterization and electrochemical properties of new functional polythiophenes. Synthetic Metals, 2010, 160, 2681-2686.	2.1	7
71	Precursor polymorph determines the organic semiconductor structure formed upon annealing. Journal of Materials Chemistry C, 2021, 9, 10865-10874.	2.7	7
72	Novel Thiophenic Copolymer as a Multi-Purpose Macromolecular Intermediate. Macromolecular Symposia, 2006, 234, 76-86.	0.4	6

#	Article	IF	CITATIONS
73	Electronic Transitions of Polyalkylthiophenes Partially Derivatized with NLO Chromophores: A Theoretical and Experimental Study. Macromolecular Chemistry and Physics, 2006, 207, 1253-1261.	1.1	6
74	Solventless deposition of oligo- and polythiophenes for bulk heterojunction solar cells. Synthetic Metals, 2014, 195, 61-68.	2.1	6
75	Effects of polar additives on the anionic polymerization of 1,3-butadiene and styrene. Journal of Polymer Research, 2015, 22, 1.	1.2	6
76	Effect of Electron-Acceptor Content on the Efficiency of Regioregular Double-Cable Thiophene Copolymers in Single-Material Organic Solar Cells. ACS Omega, 2019, 4, 19863-19874.	1.6	6
77	1H and13C NMR characterization of poly[3-(6-methoxyhexyl)-2,2′-bithiophene]. , 1999, 37, 182-188.		5
78	Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing. Journal of Materials Science, 2013, 48, 3877-3893.	1.7	5
79	Effect of composition on the properties of novel optically active methacrylic copolymers containing side-chain zinc–porphyrin chromophores suitable to chiral recognition. Dyes and Pigments, 2014, 106, 143-153.	2.0	5
80	A new thiophene-copolymer with side-chain LC mesogen group for efficient BHJ solar cells. Synthetic Metals, 2016, 222, 240-248.	2.1	5
81	A new photocrosslinkable oligothiophene for organic solar cells with enhanced stability. Materials Chemistry and Physics, 2017, 186, 98-107.	2.0	5
82	Influence of the Active Layer Structure on the Photovoltaic Performance of Water-Soluble Polythiophene-Based Solar Cells. Polymers, 2021, 13, 1640.	2.0	5
83	Synthesis and characterization of poly(3-alkylthiophenes) with NLO chromophoric groups in side chains. Macromolecular Symposia, 2002, 180, 217-222.	0.4	4
84	Use of poly(3-methylthio)thiophene blends for direct laser tracing and bulk heterojunction solar cells. Reactive and Functional Polymers, 2014, 83, 33-41.	2.0	4
85	Fluorecence Microscopy Study of CdS quantum dots Obtained by Laser Irradiation from a Single Source Precursor in Polymeric Film. Materials Today: Proceedings, 2017, 4, S19-S26.	0.9	4
86	Push–pull thiophene-based small molecules with donor and acceptor units of varying strength for photovoltaic application: beyond P3HT and PCBM. Journal of Materials Chemistry C, 2021, 9, 11216-11228.	2.7	4
87	Electrochemical synthesis and spectroscopic studies of polyalkylthiophene bearing NLO chromophoric units. Journal of Electroanalytical Chemistry, 2003, 553, 97-106.	1.9	3
88	Electrosynthesis of valuable conducting polymers from the anodic coupling of Î ² -substituted oligothiophenes. Electrochimica Acta, 2007, 52, 7849-7856.	2.6	3
89	Chirality on Amorphous High-Tg Polymeric Nanofilms: Optical Activity Amplification by Thermal Annealing. Nanomaterials, 2017, 7, 208.	1.9	3

 $_{90}$ Effect of regionegularity and role of heteroatom on the chiral behavior of oligo(heteroalkyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{1.3}^{50}$ 62 Td (

#	Article	IF	CITATIONS
91	Viable synthesis of a self-assembling regioregular thiophenic copolymer for second-order non-linear optics. Polymer, 2007, 48, 3406-3412.	1.8	2
92	Polymers with Alkylsulfanyl Side Chains for Bulk Heterojunction Solar Cells: Toward a Greener Strategy. Macromolecular Chemistry and Physics, 2017, 218, 1700111.	1.1	2
93	Synthesis and Characterization of a Highly Soluble Poly[3-(10-hydroxydecyl)thiophene]. Macromolecular Symposia, 2001, 169, 11-20.	0.4	1
94	Octithiophenes via One-Pot Oxidative Coupling of 4-(ω-Functionalized Alkylsulfanyl)-2,2′-Bithiophenes. Synthesis, 2010, 2010, 1659-1665.	1.2	1
95	Efficient and thermally stable BHJ solar cells based on a soluble hydroxy-functionalized regioregular polydodecylthiophene. Reactive and Functional Polymers, 2021, 158, 104803.	2.0	1