
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3576286/publications.pdf Version: 2024-02-01

FIS PADON

#	Article	IF	CITATIONS
1	Mapping inhibitory sites on the RNA polymerase of the 1918 pandemic influenza virus using nanobodies. Nature Communications, 2022, 13, 251.	5.8	14
2	Nanobodies as allosteric modulators of Parkinson's disease–associated LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
3	Structure, substrate recognition and initiation of hyaluronan synthase. Nature, 2022, 604, 195-201.	13.7	53
4	Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nature Structural and Molecular Biology, 2022, 29, 420-429.	3.6	29
5	Stabilization of Metaâ€I Rhodopsin Conformation by a Nanobody. FASEB Journal, 2022, 36, .	0.2	0
6	Structural basis of sodium-dependent bile salt uptake into the liver. Nature, 2022, 606, 1015-1020.	13.7	35
7	Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. Journal of Cell Biology, 2021, 220, .	2.3	23
8	Structure of the phosphoinositide 3-kinase (PI3K) p110Î ³ -p101 complex reveals molecular mechanism of GPCR activation. Science Advances, 2021, 7, .	4.7	25
9	HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure, 2021, 29, 1371-1381.e6.	1.6	10
10	Structure of autoinhibited Akt1 reveals mechanism of PIP ₃ -mediated activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
11	A topological switch in CFTR modulates channel activity and sensitivity to unfolding. Nature Chemical Biology, 2021, 17, 989-997.	3.9	13
12	Nanobody-aided crystallization of the transcription regulator PaaR2 from <i>Escherichia coli</i> O157:H7. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 374-384.	0.4	2
13	Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nature Methods, 2021, 18, 60-68.	9.0	79
14	Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
15	Structure, mechanism, and inhibition of Hedgehog acyltransferase. Molecular Cell, 2021, 81, 5025-5038.e10.	4.5	28
16	Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30476-30487.	3.3	29
17	The G-Protein Rab5A Activates VPS34 Complex II, a Class III PI3K, by a Dual Regulatory Mechanism. Biophysical Journal, 2020, 119, 2205-2218.	0.2	13
18	Diversity in kinetics correlated with structure in nano body-stabilized LacY. PLoS ONE, 2020, 15, e0232846.	1.1	3

#	Article	IF	CITATIONS
19	Nanobody-enabled monitoring of kappa opioid receptor states. Nature Communications, 2020, 11, 1145.	5.8	93
20	Nanobodies to study protein conformational states. Current Opinion in Structural Biology, 2020, 60, 117-123.	2.6	59
21	Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochemical Journal, 2020, 477, 1203-1218.	1.7	12
22	Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. ELife, 2020, 9, .	2.8	16
23	In vitro reconstitution of dynamically interacting integral membrane subunits of energy-coupling factor transporters. ELife, 2020, 9, .	2.8	13
24	A structure of substrate-bound Synaptojanin1 provides new insights in its mechanism and the effect of disease mutations. ELife, 2020, 9, .	2.8	11
25	Diversity in kinetics correlated with structure in nano body-stabilized LacY. , 2020, 15, e0232846.		0
26	Diversity in kinetics correlated with structure in nano body-stabilized LacY. , 2020, 15, e0232846.		0
27	Diversity in kinetics correlated with structure in nano body-stabilized LacY. , 2020, 15, e0232846.		0
28	Diversity in kinetics correlated with structure in nano body-stabilized LacY. , 2020, 15, e0232846.		0
29	Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nature Microbiology, 2019, 4, 1805-1814.	5.9	23
30	Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature, 2019, 573, 287-290.	13.7	151
31	A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nature Chemical Biology, 2019, 15, 1156-1164.	3.9	43
32	The morphogen Sonic hedgehog inhibits its receptor Patched by a pincer grasp mechanism. Nature Chemical Biology, 2019, 15, 975-982.	3.9	52
33	An improved yeast surface display platform for the screening of nanobody immune libraries. Scientific Reports, 2019, 9, 382.	1.6	66
34	Domain-interface dynamics of CFTR revealed by stabilizing nanobodies. Nature Communications, 2019, 10, 2636.	5.8	24
35	Interrogating dense ligand chemical space with a forward-synthetic library. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11496-11501.	3.3	16
36	L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nature Communications, 2019, 10, 1807.	5.8	57

#	Article	IF	CITATIONS
37	Structures of ligand-occupied β-Klotho complexes reveal a molecular mechanism underlying endocrine FGF specificity and activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7819-7824.	3.3	27
38	Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathogens, 2019, 15, e1008139.	2.1	22
39	The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell, 2019, 176, 435-447.e15.	13.5	221
40	GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565, 454-459.	13.7	386
41	Cryo-EM structure of the human $\hat{I}\pm 1\hat{I}^23\hat{I}^32$ GABAA receptor in a lipid bilayer. Nature, 2019, 565, 516-520.	13.7	264
42	Structure of Prototypic Peptide Transporter DtpA from <i>E. coli</i> in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. Journal of the American Chemical Society, 2019, 141, 2404-2412.	6.6	51
43	Nanobodyâ€Enabled Reverse Pharmacology on Gâ€Proteinâ€Coupled Receptors. Angewandte Chemie - International Edition, 2018, 57, 5292-5295.	7.2	36
44	Nanobodyâ€Enabled Reverse Pharmacology on Gâ€Protein oupled Receptors. Angewandte Chemie, 2018, 130, 5390-5393.	1.6	3
45	Structures of β-klotho reveal a â€~zip code'-like mechanism for endocrine FGF signalling. Nature, 2018, 553, 501-505.	13.7	160
46	Binding-Site Compatible Fragment Growing Applied to the Design of β ₂ -Adrenergic Receptor Ligands. Journal of Medicinal Chemistry, 2018, 61, 1118-1129.	2.9	39
47	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	13.5	299
48	Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Analytical Chemistry, 2018, 90, 5306-5313.	3.2	15
49	Characterization and structure determination of a llama-derived nanobody targeting the J-base binding protein 1. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 690-695.	0.4	1
50	Challenges in the Structural–Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods in Enzymology, 2018, 611, 607-675.	0.4	7
51	Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nature Chemical Biology, 2018, 14, 1059-1066.	3.9	155
52	Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications, 2018, 9, 1996.	5.8	65
53	Crystal structure of human Mediator subunit MED23. Nature Communications, 2018, 9, 3389.	5.8	22
54	Crystal Structure of a ligand-bound LacY–Nanobody Complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8769-8774.	3.3	32

#	Article	IF	CITATIONS
55	Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Scientific Reports, 2017, 7, 46641.	1.6	23
56	Leishmania donovani tyrosyl-tRNA synthetase structure in complex with a tyrosyl adenylate analog and comparisons with human and protozoan counterparts. Biochimie, 2017, 138, 124-136.	1.3	13
57	A specific nanobody prevents amyloidogenesis of D76N β2-microglobulin in vitro and modifies its tissue distribution in vivo. Scientific Reports, 2017, 7, 46711.	1.6	18
58	Rational Design of Nanobody80 Loop Peptidomimetics: Towards Biased β 2 Adrenergic Receptor Ligands. Chemistry - A European Journal, 2017, 23, 9632-9640.	1.7	13
59	Crystallographic and biochemical characterization of the dimeric architecture of site-2 protease. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1859-1871.	1.4	6
60	Structure of PINK1 in complex with its substrate ubiquitin. Nature, 2017, 552, 51-56.	13.7	114
61	Generation and Characterization of Anti-VGLUT Nanobodies Acting as Inhibitors of Transport. Biochemistry, 2017, 56, 3962-3971.	1.2	40
62	Structural basis for GABAA receptor potentiation by neurosteroids. Nature Structural and Molecular Biology, 2017, 24, 986-992.	3.6	145
63	The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools. Journal of Structural Biology, 2016, 195, 19-30.	1.3	15
64	Thermodynamics of Nanobody Binding to Lactose Permease. Biochemistry, 2016, 55, 5917-5926.	1.2	5
65	Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 2016, 535, 448-452.	13.7	290
66	Crystal structure of a LacY–nanobody complex in a periplasmic-open conformation. Proceedings of the United States of America, 2016, 113, 12420-12425.	3.3	38
67	Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature, 2016, 535, 182-186.	13.7	235
68	Thermodynamic Insights into Conformational Dynamics of Sugar Transporters. Biophysical Journal, 2016, 110, 137a.	0.2	0
69	Functional and Biochemical Characterization of Alvinella pompejana Cys-Loop Receptor Homologues. PLoS ONE, 2016, 11, e0151183.	1.1	4
70	Transient conformers of LacY are trapped by nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13839-13844.	3.3	22
71	Crystal structure of the Bloom's syndrome helicase indicates a role for the HRDC domain in conformational changes. Nucleic Acids Research, 2015, 43, 5221-5235.	6.5	74
72	Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research, 2015, 46, 14.	1.1	17

#	Article	IF	CITATIONS
73	Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 2015, 350, aac7365.	6.0	208
74	Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nature Structural and Molecular Biology, 2015, 22, 803-808.	3.6	159
75	Production, crystallization and preliminary X-ray diffraction of the Cî±s α-helical domain in complex with a nanobody. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1504-1507.	0.4	0
76	Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2984-2989.	3.3	120
77	Outward-facing conformers of LacY stabilized by nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18548-18553.	3.3	23
78	SAXS analysis of the tRNA-modifying enzyme complex MnmE/MnmG reveals a novel interaction mode and GTP-induced oligomerization. Nucleic Acids Research, 2014, 42, 5978-5992.	6.5	27
79	A general protocol for the generation of Nanobodies for structural biology. Nature Protocols, 2014, 9, 674-693.	5.5	571
80	Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nature Structural and Molecular Biology, 2014, 21, 990-996.	3.6	171
81	Probing the N-Terminal β-Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody. Journal of the American Chemical Society, 2014, 136, 937-944.	6.6	97
82	The Molecular Mechanism of Shiga Toxin Stx2e Neutralization by a Single-domain Antibody Targeting the Cell Receptor-binding Domain. Journal of Biological Chemistry, 2014, 289, 25374-25381.	1.6	26
83	Regulation of <i>β</i> ₂ -Adrenergic Receptor Function by Conformationally Selective Single-Domain Intrabodies. Molecular Pharmacology, 2014, 85, 472-481.	1.0	121
84	NANOBODIES FOR THE STRUCTURAL AND FUNCTIONAL INVESTIGATION OF GPCR TRANSMEMBRANE SIGNALING. , 2014, , .		0
85	Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain. Scientific Reports, 2014, 4, 7373.	1.6	15
86	Nanobody Mediated Inhibition of Attachment of F18 Fimbriae Expressing Escherichia coli. PLoS ONE, 2014, 9, e114691.	1.1	23
87	The structure of the D3 domain of Plasmodium falciparum myosin tail interacting protein MTIP in complex with a nanobody. Molecular and Biochemical Parasitology, 2013, 190, 87-91.	0.5	13
88	Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO Journal, 2013, 32, 1195-1204.	3.5	85
89	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	13.7	779
90	Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13386-13391.	3.3	225

#	Article	IF	CITATIONS
91	Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. Journal of Molecular Biology, 2013, 425, 2397-2411.	2.0	90
92	Production, crystallization and X-ray diffraction analysis of two nanobodies against the Duffy binding-like (DBL) domain DBL6â^Š-FCR3 of thePlasmodium falciparumVAR2CSA protein. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 270-274.	0.7	2
93	A Nanobody Binding to Non-Amyloidogenic Regions of the Protein Human Lysozyme Enhances Partial Unfolding but Inhibits Amyloid Fibril Formation. Journal of Physical Chemistry B, 2013, 117, 13245-13258.	1.2	42
94	Structure of an early nativeâ€like intermediate of β2â€microglobulin amyloidogenesis. Protein Science, 2013, 22, 1349-1357.	3.1	14
95	Nanobody Mediated Crystallization of an Archeal Mechanosensitive Channel. PLoS ONE, 2013, 8, e77984.	1.1	20
96	Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody. Nucleic Acids Research, 2012, 40, 1828-1840.	6.5	35
97	The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Research, 2012, 40, 6966-6977.	6.5	19
98	A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Archives of Biochemistry and Biophysics, 2012, 526, 114-123.	1.4	46
99	SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature, 2012, 487, 119-122.	13.7	125
100	Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic β2-microglobulin variant. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1314-1319.	3.3	108
101	Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 2011, 477, 549-555.	13.7	2,712
102	Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. Journal of Structural Biology, 2011, 174, 124-136.	1.3	27
103	Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 2011, 469, 175-180.	13.7	1,523
104	Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Engineering, Design and Selection, 2011, 24, 737-741.	1.0	17
105	Structural flexibility of the Cî±s α-helical domain in the β ₂ -adrenoceptor Gs complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16086-16091.	3.3	204
106	Measuring cooperative Rev protein-protein interactions on Rev responsive RNA by fluorescence resonance energy transfer. RNA Biology, 2011, 8, 316-324.	1.5	10
107	Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System. PLoS Pathogens, 2011, 7, e1002228.	2.1	83
108	Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. Journal of Biotechnology, 2010, 145, 93-98.	1.9	64

#	Article	IF	CITATIONS
109	Crystallization and preliminary X-ray diffraction analysis of a specific VHH domain against mouse prion protein. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1644-1646.	0.7	8
110	An Intrabody Based on a Llama Single-domain Antibody Targeting the N-terminal α-Helical Multimerization Domain of HIV-1 Rev Prevents Viral Production. Journal of Biological Chemistry, 2010, 285, 21768-21780.	1.6	60
111	Structure and Properties of a Complex of α-Synuclein and a Single-Domain Camelid Antibody. Journal of Molecular Biology, 2010, 402, 326-343.	2.0	164
112	Crystal Structure of the N-Terminal Domain of the Secretin GspD from ETEC Determined with the Assistance of a Nanobody. Structure, 2009, 17, 255-265.	1.6	164
113	1H, 13C and 15N assignments of a camelid nanobody directed against human α-synuclein. Biomolecular NMR Assignments, 2009, 3, 231-233.	0.4	29
114	Nanobody-aided structure determination of the Epsl:EpsJ pseudopilin heterodimer from Vibrio vulnificus. Journal of Structural Biology, 2009, 166, 8-15.	1.3	72
115	Engineering a Camelid Antibody Fragment That Binds to the Active Site of Human Lysozyme and Inhibits Its Conversion into Amyloid Fibrils. Biochemistry, 2008, 47, 11041-11054.	1.2	66
116	Reduced Global Cooperativity is a Common Feature Underlying the Amyloidogenicity of Pathogenic Lysozyme Mutations. Journal of Molecular Biology, 2005, 346, 773-788.	2.0	100
117	Identification of a Universal VHH Framework to Graft Non-canonical Antigen-binding Loops of Camel Single-domain Antibodies. Journal of Molecular Biology, 2005, 352, 597-607.	2.0	194
118	Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13 in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nature Genetics, 1997, 16, 88-92.	9.4	333
119	A Ca2+-binding Chimera of Human Lysozyme and Bovine α-Lactalbumin That Can Form a Molten Globule. Journal of Biological Chemistry, 1995, 270, 10514-10524.	1.6	36
120	Cryo-EM Structure of an Atypical Proton-Coupled Peptide Transporter: Di- and Tripeptide Permease C. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6