
Jing-Long Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3576062/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol. Environmental Science & Technology, 2018, 52, 9972-9982.	4.6	194
2	In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants. Applied Catalysis B: Environmental, 2019, 256, 117774.	10.8	129
3	Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosensors and Bioelectronics, 2016, 80, 118-122.	5.3	87
4	Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chemical Engineering Journal, 2020, 382, 123017.	6.6	83
5	Electrical selection for planktonic sludge microbial community function and assembly. Water Research, 2021, 206, 117744.	5.3	81
6	Deep Dehalogenation of Florfenicol Using Crystalline CoP Nanosheet Arrays on a Ti Plate via Direct Cathodic Reduction and Atomic H. Environmental Science & Technology, 2019, 53, 11932-11940.	4.6	67
7	Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux. Water Research, 2016, 102, 619-628.	5.3	59
8	UV photolysis as an efficient pretreatment method for antibiotics decomposition and their antibacterial activity elimination. Journal of Hazardous Materials, 2020, 392, 122321.	6.5	54
9	Electrochemistry-stimulated environmental bioremediation: Development of applicable modular electrode and system scale-up. Environmental Science and Ecotechnology, 2020, 3, 100050.	6.7	53
10	A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chemical Engineering Journal, 2020, 391, 123503.	6.6	48
11	Borate Inorganic Cross-Linked Durable Graphene Oxide Membrane Preparation and Membrane Fouling Control. Environmental Science & Technology, 2019, 53, 1501-1508.	4.6	37
12	Preparation of carboxylic multiwalled-carbon-nanotube–modified poly(m-phenylene isophthalamide) hollow fiber nanofiltration membranes with improved performance and application for dye removal. Applied Surface Science, 2018, 453, 502-512.	3.1	36
13	Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost. Environmental Research, 2021, 197, 111029.	3.7	35
14	Micropollutant abatement by the UV/chloramine process in potable water reuse: A review. Journal of Hazardous Materials, 2022, 424, 127341.	6.5	35
15	Palladized cells as suspension catalyst and electrochemical catalyst for reductively degrading aromatics contaminants: Roles of Pd size and distribution. Water Research, 2017, 125, 288-297.	5.3	34
16	A2O-MBR as an efficient and profitable unconventional water treatment and reuse technology: A practical study in a green building residential community. Resources, Conservation and Recycling, 2019, 150, 104418.	5.3	32
17	Electroactive Biofilm Serving as the Green Synthesizer and Stabilizer for <i>in Situ</i> Fabricating 3D Nanopalladium Network: An Efficient Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2016, 4, 5392-5397.	3.2	29
18	Carbon nanotubes intercalated RGO electro-Fenton membrane for coenhanced permeability, rejection and catalytic oxidation of organic micropollutants. Journal of Membrane Science, 2021, 623, 119069.	4.1	29

JING-LONG HAN

#	Article	IF	CITATIONS
19	Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. Journal of Hazardous Materials, 2017, 338, 287-295.	6.5	28
20	Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater. Science of the Total Environment, 2018, 628-629, 261-270.	3.9	27
21	Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis. Journal of Environmental Sciences, 2016, 39, 198-207.	3.2	25
22	Insights into palladium nanoparticles produced by Shewanella oneidensis MR-1: Roles of NADH dehydrogenases and hydrogenases. Environmental Research, 2020, 191, 110196.	3.7	17
23	Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems. Environmental Research, 2020, 191, 110093.	3.7	16
24	Shewanella oneidensis MR-1 self-assembled Pd-cells-rGO conductive composite for enhancing electrocatalysis. Environmental Research, 2020, 184, 109317.	3.7	16
25	Perylene pigment wastewater treatment by fenton-enhanced biological process. Environmental Research, 2020, 186, 109522.	3.7	16
26	Evaluating the effect of fenton pretreated pyridine wastewater under different biological conditions: Microbial diversity and biotransformation pathways. Journal of Environmental Management, 2021, 287, 112297.	3.8	15
27	Influence of nitrate concentration on trichloroethylene reductive dechlorination in weak electric stimulation system. Chemosphere, 2022, 295, 133935.	4.2	15
28	Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling. Journal of Membrane Science, 2019, 576, 190-197.	4.1	14
29	Effect of preferential UV photolysis on the source control of antibiotic resistome during subsequent biological treatment systems. Journal of Hazardous Materials, 2021, 414, 125484.	6.5	12
30	UV activation of the pi bond in pyridine for efficient pyridine degradation and mineralization by UV/H2O2 treatment. Chemosphere, 2020, 258, 127208.	4.2	10
31	Metal singleâ€∎tom onfined electrocatalysts to water oxidation: Development, innovation, and challenges. Electrochemical Science Advances, 2022, 2, e202100102.	1.2	3