
Feliciana Real FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/357569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-reactive peptide epitopes of Enterovirus Coxsackie B4 and human glutamic acid decarboxylase detecting antibodies in latent autoimmune diabetes in adults versus type 1 diabetes. Clinica Chimica Acta, 2021, 515, 73-79.	1.1	3
2	A peptide-based anti-Adalimumab antibody assay to monitor immune response to biologics treatment in juvenile idiopathic arthritis and childhood chronic non-infectious uveitis. Scientific Reports, 2021, 11, 16393.	3.3	3
3	ELISA based on peptide antigens reproducing cross-reactive viral epitopes to detect antibodies in latent autoimmune diabetes in adults vs. type 1 diabetes. MethodsX, 2021, 8, 101452.	1.6	1
4	Selective capture of antiâ€Nâ€glucosylated NTHi adhesin peptide antibodies by a multivalent dextran conjugate. ChemBioChem, 2021, , .	2.6	4
5	A Multiple N-Glucosylated Peptide Epitope Efficiently Detecting Antibodies in Multiple Sclerosis. Brain Sciences, 2020, 10, 453.	2.3	5
6	Hyperglucosylated adhesinâ€derived peptides as antigenic probes in multiple sclerosis: Structure optimization and immunological evaluation. Journal of Peptide Science, 2020, 26, e3281.	1.4	3
7	Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. Phytochemistry, 2020, 176, 112392.	2.9	4
8	An Optimised Di-Boronate-ChemMatrix Affinity Chromatography to Trap Deoxyfructosylated Peptides as Biomarkers of Glycation. Molecules, 2020, 25, 755.	3.8	10
9	Modeling interaction between gp120 HIV protein and CCR5 receptor. Journal of Peptide Science, 2019, 25, e3142.	1.4	4
10	Humoral Response Against LLâ€37 in Psoriatic Disease: Comment on the Article by Yuan et al. Arthritis and Rheumatology, 2019, 71, 1964-1965.	5.6	3
11	Detection of anti-adalimumab antibodies in a RA responsive cohort of patients using three different techniques. Analytical Biochemistry, 2019, 566, 133-138.	2.4	7
12	Histone Protein Epitope Mapping for Autoantibody Recognition in Rheumatoid Arthritis. Methods in Molecular Biology, 2019, 1901, 221-228.	0.9	1
13	Study of Aberrant Modifications in Peptides as a Test Bench to Investigate the Immunological Response to Non-Enzymatic Glycation. Folia Biologica, 2019, 65, 195-202.	0.6	0
14	Anti-adalimumab antibodies in a cohort of patients with juvenile idiopathic arthritis: incidence and clinical correlations. Clinical Rheumatology, 2018, 37, 1407-1411.	2.2	20
15	Antibodies to post-translationally modified mitochondrial peptide PDC-E2(167–184) in type 1 diabetes. Archives of Biochemistry and Biophysics, 2018, 659, 66-74.	3.0	6
16	Oleanane-type glycosides from the roots of Weigela florida "rumba―and evaluation of their antibody recognition. Fìtoterapìâ, 2018, 128, 198-203.	2.2	7
17	Structure–Activity Relationship Studies, SPR Affinity Characterization, and Conformational Analysis of Peptides That Mimic the HNKâ€I Carbohydrate Epitope. ChemMedChem, 2017, 12, 751-759.	3.2	5
18	Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae. Scientific Reports, 2016, 6, 39430.	3.3	23

#	Article	IF	CITATIONS
19	Natural Triterpene Glycosides for Antibody Recognition. Planta Medica Letters, 2016, 3, e2-e7.	0.2	2
20	Antibody Recognition in multiple sclerosis and rett syndrome using a collection of linear and cyclic <i>N</i> â€glucosylated antigenic probes. Biopolymers, 2015, 104, 560-576.	2.4	15
21	Interaction Study of Phospholipid Membranes with an N-Glucosylated β-Turn Peptide Structure Detecting Autoantibodies Biomarkers of Multiple Sclerosis. Membranes, 2015, 5, 576-596.	3.0	5
22	Synthetic Peptides Reproducing Tissue Transglutaminase–Gliadin Complex Neo-epitopes as Probes for Antibody Detection in Celiac Disease Patients' Sera. Journal of Medicinal Chemistry, 2015, 58, 1390-1399.	6.4	6
23	Role of Lipoylation of the Immunodominant Epitope of Pyruvate Dehydrogenase Complex: Toward a Peptide-Based Diagnostic Assay for Primary Biliary Cirrhosis. Journal of Medicinal Chemistry, 2015, 58, 6619-6629.	6.4	7
24	Surface plasmon resonance-based methodology for anti-adalimumab antibody identification and kinetic characterization. Analytical and Bioanalytical Chemistry, 2015, 407, 7477-7485.	3.7	18
25	Label-free method for anti-glucopeptide antibody detection in Multiple Sclerosis. MethodsX, 2015, 2, 141-144.	1.6	16
26	Interactions between Human Antibodies and Synthetic Conformational Peptide Epitopes: Innovative Approach for Electrochemical Detection of Biomarkers of Multiple Sclerosis at Platinum Electrodes. Electrochimica Acta, 2015, 176, 1239-1247.	5.2	14
27	Surface Plasmon Resonance Method to Evaluate Anti-citrullinated Protein/Peptide Antibody Affinity to Citrullinated Peptides. Methods in Molecular Biology, 2015, 1348, 267-274.	0.9	6
28	Human recombinant domain antibodies against multiple sclerosis antigenic peptide CSF114(Glc). Journal of Molecular Recognition, 2014, 27, 618-626.	2.1	4
29	Immune Dysfunction in Rett Syndrome Patients Revealed by High Levels of Serum Anti-N(Glc) IgM Antibody Fraction. Journal of Immunology Research, 2014, 2014, 1-6.	2.2	18
30	Epitope mapping of the N-terminal portion of tissue transglutaminase protein antigen to identify linear epitopes in celiac disease. Journal of Peptide Science, 2014, 20, 689-695.	1.4	4
31	Biosensor analysis of anti-citrullinated protein/peptide antibody affinity. Analytical Biochemistry, 2014, 465, 96-101.	2.4	20
32	Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors. Analytical and Bioanalytical Chemistry, 2013, 405, 827-835.	3.7	17
33	Alpha Actinin is Specifically Recognized by Multiple Sclerosis Autoantibodies Isolated Using an N-Glucosylated Peptide Epitope. Molecular and Cellular Proteomics, 2013, 12, 277-282.	3.8	14
34	Glycopeptide-Based Antibody Detection in Multiple Sclerosis by Surface Plasmon Resonance. Sensors, 2012, 12, 5596-5607.	3.8	27
35	Microwave-assisted reaction of glycosylamine with aspartic acid. Amino Acids, 2010, 39, 599-604.	2.7	2
36	Posttranslationally modified peptides efficiently mimicking neoantigens: A challenge for theragnostics of autoimmune diseases. Biopolymers, 2010, 94, 791-799.	2.4	24

#	Article	IF	CITATIONS
37	Synthesis of new ribosylated Asn building blocks as useful tools for glycopeptide and glycoprotein synthesis. Tetrahedron Letters, 2009, 50, 4151-4153.	1.4	12
38	Synthesis Of Organometallic Glycopeptides And Electrochemical Studies To Detect Autoantibodies In Multiple Sclerosis Patients'Sera Advances in Experimental Medicine and Biology, 2009, 611, 435-436.	1.6	0
39	Ferrocenyl glycopeptides as electrochemical probes to detect autoantibodies in multiple sclerosis patients' sera. Biopolymers, 2008, 90, 488-495.	2.4	32
40	Does an Aberrant Glucosylation Trigger Autoimmunity in Multiple Sclerosis?. , 2006, , 775-776.		0
41	Optimization of Multiple Sclerosis Antigenic Probes by a Combinatorial Approach. , 2006, , 779-780.		Ο
42	Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Frontiers in Chemistry, 0, 10, .	3.6	0