Natalya Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3575206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 2019, 566, 65-72.	27.8	277
2	Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 2019, 40, 1251-1289.	4.6	262
3	The Sea-Level Fingerprint of West Antarctic Collapse. Science, 2009, 323, 753-753.	12.6	222
4	The Paris Climate Agreement and future sea-level rise from Antarctica. Nature, 2021, 593, 83-89.	27.8	219
5	Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geoscience, 2010, 3, 850-853.	12.9	132
6	On the robustness of predictions of sea level fingerprints. Geophysical Journal International, 2011, 187, 729-742.	2.4	132
7	Solid Earth change and the evolution of the Antarctic Ice Sheet. Nature Communications, 2019, 10, 503.	12.8	93
8	A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky. Earth and Planetary Science Letters, 2013, 384, 88-99.	4.4	91
9	A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. Geophysical Journal International, 2010, 180, 623-634.	2.4	85
10	Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss. Nature Communications, 2015, 6, 8798.	12.8	82
11	The sea-level fingerprints of ice-sheet collapse during interglacial periods. Quaternary Science Reviews, 2014, 87, 60-69.	3.0	58
12	A Coupled Ice Sheet–Sea Level Model Incorporating 3D Earth Structure: Variations in Antarctica during the Last Deglacial Retreat. Journal of Climate, 2018, 31, 4041-4054.	3.2	54
13	The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of Geophysics, 2020, 58, e2019RG000663.	23.0	49
14	Sea Level Fingerprints in a Region of Complex Earth Structure: The Case of WAIS. Journal of Climate, 2017, 30, 1881-1892.	3.2	44
15	Variations of the Antarctic Ice Sheet in a Coupled Ice Sheetâ€Earth ea Level Model: Sensitivity to Viscoelastic Earth Properties. Journal of Geophysical Research F: Earth Surface, 2017, 122, 2124-2138.	2.8	43
16	Evolution of a coupled marine ice sheet–sea level model. Journal of Geophysical Research, 2012, 117, .	3.3	41
17	The seaâ€level conundrum: case studies from palaeoâ€archives. Journal of Quaternary Science, 2010, 25, 19-25.	2.1	32
18	Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing. Nature, 2020, 587, 600-604.	27.8	32

NATALYA GOMEZ

#	Article	IF	CITATIONS
19	Laurentideâ€Cordilleran Ice Sheet saddle collapse as a contribution to meltwater pulse 1A. Geophysical Research Letters, 2015, 42, 3954-3962.	4.0	30
20	Global Tidal Impacts of Largeâ€6cale Ice Sheet Collapses. Journal of Geophysical Research: Oceans, 2017, 122, 8354-8370.	2.6	30
21	Rapid postglacial rebound amplifies global sea level rise following West Antarctic Ice Sheet collapse. Science Advances, 2021, 7, .	10.3	25
22	Viscous Effects in the Solid Earth Response to Modern Antarctic Ice Mass Flux: Implications for Geodetic Studies of WAIS Stability in a Warming World. Journal of Climate, 2020, 33, 443-459.	3.2	24
23	Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4419-4428.	4.9	18
24	The rotational stability of a triaxial iceâ€age Earth. Journal of Geophysical Research, 2010, 115, .	3.3	15
25	Elevation Changes of the Fennoscandian Ice Sheet Interior During the Last Deglaciation. Geophysical Research Letters, 2020, 47, e2020GL088796.	4.0	15
26	The impact of 3-D Earth structure on far-field sea level following interglacial West Antarctic Ice Sheet collapse. Quaternary Science Reviews, 2021, 273, 107256.	3.0	12
27	Precise water level measurements using low-cost GNSS antenna arrays. Earth Surface Dynamics, 2021, 9, 673-685.	2.4	11
28	Post-Glacial Isostatic Adjustment and Global Warming in Subarctic Canada: Implications for Islands of the James Bay Region. Arctic, 2009, 62, .	0.4	11
29	Resolving glacial isostatic adjustment (GIA) in response to modern and future ice loss at marine grounding lines in West Antarctica. Cryosphere, 2022, 16, 2203-2223.	3.9	8
30	Youth Environmental Science Outreach in the Mushkegowuk Territory of Subarctic Ontario, Canada. Applied Environmental Education and Communication, 2011, 10, 201-210.	1.1	6
31	The impact of water loading on postglacial decay times in Hudson Bay. Earth and Planetary Science Letters, 2018, 489, 156-165.	4.4	6
32	Estimating Modern Elevations of Pliocene Shorelines Using a Coupled Ice Sheetâ€Earthâ€Sea Level Model. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2279-2291.	2.8	5
33	Capturing the interactions between ice sheets, sea level and the solid Earth on a range of timescales: a new "time window―algorithm. Geoscientific Model Development, 2022, 15, 1355-1373.	3.6	5
34	Sea Level Change in the Western James Bay Region of Subarctic Ontario: Emergent Land and Implications for Treaty No. 9. Arctic, 2016, 69, 99.	0.4	4
35	Modeling Northern Hemispheric Ice Sheet Dynamics, Sea Level Change, and Solid Earth Deformation Through the Last Glacial Cycle. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006040.	2.8	3
36	Multi entury Impacts of Ice Sheet Retreat on Sea Level and Ocean Tides in Hudson Bay. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015104.	2.6	3

NATALYA GOMEZ

#	Article	IF	CITATIONS
37	The Influence of the Solid Earth on the Contribution of Marine Sections of the Antarctic Ice Sheet to Future Seaâ€Level Change. Geophysical Research Letters, 2022, 49, .	4.0	3
38	Small glacier has big effect on sea-level rise. Nature, 2015, 526, 510-511.	27.8	1
39	The robustness of geodetically-derived 1-D Antarctic viscosity models in the presence of complex 3-D viscoelastic Earth structure. Geophysical Journal International, 0, , .	2.4	1
40	Atmospheric Gravitational Tides of Earth-like Planets Orbiting Low-mass Stars. Planetary Science Journal, 2022, 3, 162.	3.6	0