## Akkapol Suea-Ngam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3575047/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | In Situ Nucleic Acid Amplification and Ultrasensitive Colorimetric Readout in a Paperâ€Based Analytical<br>Device Using Silver Nanoplates. Advanced Healthcare Materials, 2021, 10, e2001755.                                    | 7.6 | 17        |
| 2  | Machine learning and chemometrics for electrochemical sensors: moving forward to the future of analytical chemistry. Analyst, The, 2021, 146, 6351-6364.                                                                         | 3.5 | 41        |
| 3  | An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chemical Science, 2021, 12, 12733-12743.                                                                       | 7.4 | 71        |
| 4  | Fluorometric Paper-Based, Loop-Mediated Isothermal Amplification Devices for Quantitative<br>Point-of-Care Detection of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). ACS Sensors,<br>2021, 6, 742-751.             | 7.8 | 53        |
| 5  | Nanomaterials for molecular signal amplification in electrochemical nucleic acid biosensing: recent<br>advances and future prospects for point-of-care diagnostics. Molecular Systems Design and<br>Engineering, 2020, 5, 49-66. | 3.4 | 53        |
| 6  | An ultrasensitive non-noble metal colorimetric assay using starch-iodide complexation for<br>Ochratoxin A detection. Analytica Chimica Acta, 2020, 1135, 29-37.                                                                  | 5.4 | 14        |
| 7  | Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.                                                                                     | 7.8 | 56        |
| 8  | Droplet microfluidics: from proof-of-concept to real-world utility?. Chemical Communications, 2019, 55, 9895-9903.                                                                                                               | 4.1 | 93        |
| 9  | An Exonuclease I-Assisted Silver-Metallized Electrochemical Aptasensor for Ochratoxin A Detection.<br>ACS Sensors, 2019, 4, 1560-1568.                                                                                           | 7.8 | 64        |
| 10 | PDMS-Based Microfluidic Device for Infrared-Transmission Spectro-Electrochemistry. Bulletin of the Chemical Society of Japan, 2018, 91, 728-734.                                                                                 | 3.2 | 3         |
| 11 | Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta, 2017, 175, 331-337.                                                      | 5.5 | 72        |
| 12 | Graphene-polyaniline modified electrochemical droplet-based microfluidic sensor for<br>high-throughput determination of 4-aminophenol. Analytica Chimica Acta, 2016, 925, 51-60.                                                 | 5.4 | 72        |
| 13 | Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode.<br>Talanta, 2016, 158, 134-141.                                                                                                    | 5.5 | 23        |
| 14 | Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Analytica Chimica Acta, 2015, 883, 45-54.                                      | 5.4 | 45        |