List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3574177/publications.pdf Version: 2024-02-01

		24978	28224
143	11,975	57	105
papers	citations	h-index	g-index
172	172	172	13990
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single-Step Assembly of DOX/ICG Loaded Lipid–Polymer Nanoparticles for Highly Effective Chemo-photothermal Combination Therapy. ACS Nano, 2013, 7, 2056-2067.	7.3	738
2	Cancer Cell Membrane–Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS Nano, 2016, 10, 10049-10057.	7.3	657
3	Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy. ACS Nano, 2014, 8, 12310-12322.	7.3	632
4	Strontium Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and In Vivo Bone Formation by Activating Wnt/Catenin Signaling. Stem Cells, 2011, 29, 981-991.	1.4	389
5	IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials, 2013, 34, 6853-6861.	5.7	323
6	Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS Nano, 2018, 12, 8633-8645.	7.3	301
7	Cell-Membrane Immunotherapy Based on Natural Killer Cell Membrane Coated Nanoparticles for the Effective Inhibition of Primary and Abscopal Tumor Growth. ACS Nano, 2018, 12, 12096-12108.	7.3	285
8	Protein-assisted fabrication of nano-reduced graphene oxide for combined inÂvivo photoacoustic imaging and photothermal therapy. Biomaterials, 2013, 34, 5236-5243.	5.7	276
9	Indocyanine green-loaded biodegradable tumor targeting nanoprobes for inÂvitro and inÂvivo imaging. Biomaterials, 2012, 33, 5603-5609.	5.7	252
10	Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials, 2018, 177, 149-160.	5.7	235
11	Robust ICG Theranostic Nanoparticles for Folate Targeted Cancer Imaging and Highly Effective Photothermal Therapy. ACS Applied Materials & Interfaces, 2014, 6, 6709-6716.	4.0	231
12	Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014, 35, 2391-2400.	5.7	211
13	Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Letters, 2013, 5, 145-150.	14.4	204
14	Cancer Cell Membraneâ€Biomimetic Oxygen Nanocarrier for Breaking Hypoxiaâ€Induced Chemoresistance. Advanced Functional Materials, 2017, 27, 1703197.	7.8	203
15	Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst, The, 2010, 135, 1411.	1.7	188
16	Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials, 2013, 34, 3431-3438.	5.7	182
17	Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles. Biomaterials, 2014, 35, 6037-6046.	5.7	180
18	Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics. Theranostics, 2016, 6, 1043-1052.	4.6	174

#	Article	IF	CITATIONS
19	Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics, 2018, 8, 6025-6034.	4.6	171
20	Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. ACS Nano, 2020, 14, 11452-11462.	7.3	156
21	Metalloporphyrin Complexâ€Based Nanosonosensitizers for Deepâ€Tissue Tumor Theranostics by Noninvasive Sonodynamic Therapy. Small, 2019, 15, e1804028.	5.2	155
22	Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials, 2016, 93, 10-19.	5.7	140
23	Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials, 2016, 79, 88-100.	5.7	137
24	Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging. Journal of the American Chemical Society, 2012, 134, 8388-8391.	6.6	133
25	PECylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. Journal of Controlled Release, 2012, 159, 135-142.	4.8	132
26	Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. Journal of Controlled Release, 2013, 168, 271-279.	4.8	132
27	Polypeptide Cationic Micelles–Mediated Co-delivery of Docetaxel and siRNA for Synergistic Tumor Therapy. Biomaterial Engineering, 2022, , 345-359.	0.1	128
28	T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. Advanced Science, 2019, 6, 1900251.	5.6	126
29	Hybrid Polypeptide Micelles Loading Indocyanine Green for Tumor Imaging and Photothermal Effect Study. Biomacromolecules, 2013, 14, 3027-3033.	2.6	125
30	Indocyanine green–loaded polydopamine–iron ions coordination nanoparticles for photoacoustic/magnetic resonance dual-modal imaging-guided cancer photothermal therapy. Nanoscale, 2016, 8, 17150-17158.	2.8	125
31	Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells inÂvivo. Biomaterials, 2015, 38, 50-60.	5.7	123
32	Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy. Biomaterials, 2019, 214, 119226.	5.7	123
33	Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy. Scientific Reports, 2016, 6, 23393.	1.6	122
34	Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials, 2016, 101, 10-19.	5.7	111
35	Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy. Biomaterials, 2017, 134, 166-179.	5.7	107
36	Folate Receptor-Targeting Gold Nanoclusters as Fluorescence Enzyme Mimetic Nanoprobes for Tumor Molecular Colocalization Diagnosis. Theranostics, 2014, 4, 142-153.	4.6	104

#	Article	IF	CITATIONS
37	In Situ Photocatalyzed Oxygen Generation with Photosynthetic Bacteria to Enable Robust Immunogenic Photodynamic Therapy in Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2020, 30, 1910176.	7.8	102
38	The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale, 2011, 3, 2307.	2.8	101
39	Tumor-targeted hybrid protein oxygen carrier to simultaneously enhance hypoxia-dampened chemotherapy and photodynamic therapy at a single dose. Theranostics, 2018, 8, 3584-3596.	4.6	98
40	NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy. Scientific Reports, 2015, 5, 14258.	1.6	89
41	Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics, 2018, 8, 2765-2781.	4.6	85
42	Self-Assembled Cationic Micelles Based on PEG-PLL-PLLeu Hybrid Polypeptides as Highly Effective Gene Vectors. Biomacromolecules, 2012, 13, 3795-3804.	2.6	83
43	A Biomimetic Aggregationâ€Induced Emission Photosensitizer with Antigenâ€Presenting and Hitchhiking Function for Lipid Droplet Targeted Photodynamic Immunotherapy. Advanced Materials, 2021, 33, e2102322.	11.1	83
44	A near infrared fluorescence resonance energy transfer based aptamer biosensor for insulin detection in human plasma. Chemical Communications, 2014, 50, 811-813.	2.2	79
45	Cationic polypeptide micelle-based antigen delivery system: A simple and robust adjuvant to improve vaccine efficacy. Journal of Controlled Release, 2013, 170, 259-267.	4.8	78
46	Scaffolds biomimicking macrophages for a glioblastoma NIR-Ib imaging guided photothermal therapeutic strategy by crossing Blood-Brain Barrier. Biomaterials, 2019, 211, 48-56.	5.7	77
47	Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy. ACS Applied Materials & Interfaces, 2016, 8, 9565-9576.	4.0	74
48	Noninvasively immunogenic sonodynamic therapy with manganese protoporphyrin liposomes against triple-negative breast cancer. Biomaterials, 2021, 269, 120639.	5.7	74
49	Lymphatic-targeted cationic liposomes: A robust vaccine adjuvant for promoting long-term immunological memory. Vaccine, 2014, 32, 5475-5483.	1.7	73
50	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	3.2	70
51	In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale, 2014, 6, 14270-14279.	2.8	67
52	Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition. Journal of Materials Chemistry A, 2014, 2, 3148.	5.2	65
53	Noninvasive Visualization of Respiratory Viral Infection Using Bioorthogonal Conjugated Near-Infrared-Emitting Quantum Dots. ACS Nano, 2014, 8, 5468-5477.	7.3	65
54	Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3–IRF3 signaling and type I interferons in dendritic cells. Vaccine, 2012, 30, 4790-4799.	1.7	64

#	Article	IF	CITATIONS
55	Dextran-based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance. Polymer Chemistry, 2013, 4, 5793.	1.9	64
56	Photosensitizer-conjugated redox-responsive dextran theranostic nanoparticles for near-infrared cancer imaging and photodynamic therapy. Polymer Chemistry, 2014, 5, 874-881.	1.9	63
57	Gold Nanoclusters–Indocyanine Green Nanoprobes for Synchronous Cancer Imaging, Treatment, and Real-Time Monitoring Based on Fluorescence Resonance Energy Transfer. ACS Applied Materials & Interfaces, 2017, 9, 25114-25127.	4.0	63
58	Sequential Magnetoâ€Actuated and Opticsâ€Triggered Biomicrorobots for Targeted Cancer Therapy. Advanced Functional Materials, 2021, 31, 2008262.	7.8	62
59	Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nature Nanotechnology, 2021, 16, 1150-1160.	15.6	62
60	Versatile Strategy To Generate a Rhodamine Triplet State as Mitochondria-Targeting Visible-Light Photosensitizers for Efficient Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 8797-8806.	4.0	60
61	Dyeâ€Anchored MnO Nanoparticles Targeting Tumor and Inducing Enhanced Phototherapy Effect via Mitochondriaâ€Mediated Pathway. Small, 2018, 14, e1801008.	5.2	58
62	Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy. Theranostics, 2017, 7, 1781-1794.	4.6	56
63	ROS-Inducing Micelles Sensitize Tumor-Associated Macrophages to TLR3 Stimulation for Potent Immunotherapy. Biomacromolecules, 2018, 19, 2146-2155.	2.6	56
64	Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm. Theranostics, 2018, 8, 4116-4128.	4.6	54
65	A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale, 2011, 3, 4724.	2.8	53
66	Lipid–Polymer Nanoparticles Encapsulating Doxorubicin and 2′-Deoxy-5-azacytidine Enhance the Sensitivity of Cancer Cells to Chemical Therapeutics. Molecular Pharmaceutics, 2013, 10, 1901-1909.	2.3	53
67	Nearâ€Infraredâ€Emitting Twoâ€Dimensional Codes Based on Latticeâ€Strained Core/(Doped) Shell Quantum Dots with Long Fluorescence Lifetime. Advanced Materials, 2014, 26, 6313-6317.	11.1	53
68	Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. Chemical Communications, 2013, 49, 6143.	2.2	51
69	Large-Scale Synthesis of Palladium Concave Nanocubes with High-Index Facets for Sustainable Enhanced Catalytic Performance. Scientific Reports, 2015, 5, 8515.	1.6	51
70	Siteâ€ s elective Trimetallic Heterogeneous Nanostructures for Enhanced Electrocatalytic Performance. Advanced Materials, 2015, 27, 5573-5577.	11.1	50
71	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Interfaces, 2020, 12, 8040-8049.	4.0	50
72	Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. Journal of Controlled Release, 2020, 319, 87-103.	4.8	48

#	Article	IF	CITATIONS
73	Enhancing the ROS generation ability of a rhodamine-decorated iridium(<scp>iii</scp>) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chemical Science, 2020, 11, 12212-12220.	3.7	46
74	Tumor-targeted nanoplatform for in situ oxygenation-boosted immunogenic phototherapy of colorectal cancer. Acta Biomaterialia, 2020, 104, 188-197.	4.1	46
75	Cell/Bacteriaâ€Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. Advanced Materials, 2021, 33, e2100241.	11.1	46
76	Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers, 2021, 13, 77.	1.7	46
77	Retinal-conjugated pH-sensitive micelles induce tumor senescence for boosting breast cancer chemotherapy. Biomaterials, 2016, 83, 219-232.	5.7	44
78	Enzyme and pH dual-responsive hyaluronic acid nanoparticles mediated combination of photodynamic therapy and chemotherapy. International Journal of Biological Macromolecules, 2019, 130, 845-852.	3.6	44
79	Nanoengineered CARâ€T Biohybrids for Solid Tumor Immunotherapy with Microenvironment Photothermalâ€Remodeling Strategy. Small, 2021, 17, e2007494.	5.2	44
80	IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials, 2022, 281, 121341.	5.7	43
81	In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery. Nanoscale, 2016, 8, 5985-5995.	2.8	41
82	Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials, 2021, 279, 121228.	5.7	41
83	Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomaterials Science, 2017, 5, 762-771.	2.6	40
84	Synergistic Therapy of Doxorubicin and miR-129-5p with Self-Cross-Linked Bioreducible Polypeptide Nanoparticles Reverses Multidrug Resistance in Cancer Cells. Biomacromolecules, 2016, 17, 1737-1747.	2.6	39
85	Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging. Nanoscale, 2015, 7, 17631-17636.	2.8	37
86	Oxygen Nanocarrier for Combined Cancer Therapy: Oxygenâ€Boosted ATPâ€Responsive Chemotherapy with Amplified ROS Lethality. Advanced Healthcare Materials, 2016, 5, 2161-2167.	3.9	37
87	Integrated Nanovaccine with MicroRNA-148a Inhibition Reprograms Tumor-Associated Dendritic Cells by Modulating miR-148a/DNMT1/SOCS1 Axis. Journal of Immunology, 2016, 197, 1231-1241.	0.4	37
88	Tumor-targeted small molecule for dual-modal imaging-guided phototherapy upon near-infrared excitation. Journal of Materials Chemistry B, 2017, 5, 9405-9411.	2.9	37
89	Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. Journal of Controlled Release, 2020, 323, 387-397.	4.8	37
90	Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications. International Journal of Molecular Sciences, 2019, 20, 3642.	1.8	36

#	Article	IF	CITATIONS
91	Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacological Research, 2021, 173, 105900.	3.1	36
92	Dual-modal imaging-guided highly efficient photothermal therapy using heptamethine cyanine-conjugated hyaluronic acid micelles. Biomaterials Science, 2017, 5, 1122-1129.	2.6	35
93	Highly Bright and Compact Alloyed Quantum Rods with Near Infrared Emitting: a Potential Multifunctional Nanoplatform for Multimodal Imaging In Vivo. Advanced Functional Materials, 2014, 24, 3897-3905.	7.8	34
94	Bioâ€Orthogonal T Cell Targeting Strategy for Robustly Enhancing Cytotoxicity against Tumor Cells. Small, 2019, 15, e1804383.	5.2	34
95	Targeted delivery of doxorubicin by CSA-binding nanoparticles for choriocarcinoma treatment. Drug Delivery, 2018, 25, 461-471.	2.5	32
96	Long-decay near-infrared-emitting doped quantum dots for lifetime-based in vivo pH imaging. Chemical Communications, 2015, 51, 11162-11165.	2.2	27
97	Smac Therapeutic Peptide Nanoparticles Inducing Apoptosis of Cancer Cells for Combination Chemotherapy with Doxorubicin. ACS Applied Materials & Interfaces, 2015, 7, 8005-8012.	4.0	27
98	Silencing câ€Rel in macrophages dampens Th1 and Th17 immune responses and alleviates experimental autoimmune encephalomyelitis in mice. Immunology and Cell Biology, 2017, 95, 593-600.	1.0	27
99	In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy. Biomaterials, 2021, 269, 120670.	5.7	24
100	Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. Nano Today, 2022, 44, 101477.	6.2	24
101	pH-sensitive loaded retinal/indocyanine green micelles as an "all-in-one―theranostic agent for multi-modal imaging in vivo guided cellular senescence-photothermal synergistic therapy. Chemical Communications, 2019, 55, 6209-6212.	2.2	23
102	Treating psoriasis by targeting its susceptibility gene Rel. Clinical Immunology, 2016, 165, 47-54.	1.4	22
103	Monitorable Mitochondria-Targeting DNAtrain for Image-Guided Synergistic Cancer Therapy. Analytical Chemistry, 2019, 91, 6996-7000.	3.2	21
104	In Situ Photocatalysis of TiO–Porphyrin-Encapsulated Nanosystem for Highly Efficient Oxidative Damage against Hypoxic Tumors. ACS Applied Materials & Interfaces, 2020, 12, 12573-12583.	4.0	21
105	In Situ Activated NK Cell as Bioâ€Orthogonal Targeted Liveâ€Cell Nanocarrier Augmented Solid Tumor Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	21
106	Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumor. Bioactive Materials, 2021, 6, 951-962.	8.6	20
107	Ratiometric imaging of butyrylcholinesterase activity in mice with nonalcoholic fatty liver using an AIE-based fluorescent probe. Journal of Materials Chemistry B, 2022, 10, 4254-4260.	2.9	20
108	ZEB1 knockdown mediated using polypeptide cationic micelles inhibits metastasis and effects sensitization to a chemotherapeutic drug for cancer therapy. Nanoscale, 2014, 6, 10084-10094.	2.8	19

#	Article	IF	CITATIONS
109	Toward edges-rich MoS ₂ layers via chemical liquid exfoliation triggering distinctive magnetism. Materials Research Letters, 2017, 5, 267-275.	4.1	19
110	A responsive AIE-active fluorescent probe for visualization of acetylcholinesterase activity <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2022, 6, 1515-1521.	3.2	19
111	Optical sensing nanostructures for porous silicon rugate filters. Nanoscale Research Letters, 2012, 7, 79.	3.1	18
112	Iron oxide nanoparticles protected by NIR-active multidentate-polymers as multifunctional nanoprobes for NIRF/PA/MR trimodal imaging. Nanoscale, 2016, 8, 775-779.	2.8	18
113	Bovine serum albumin-loaded nano-selenium/ICG nanoparticles for highly effective chemo-photothermal combination therapy. RSC Advances, 2017, 7, 30717-30724.	1.7	18
114	Glycometabolic Bioorthogonal Chemistryâ€Guided Viral Transduction for Robust Human T Cell Engineering. Advanced Functional Materials, 2019, 29, 1807528.	7.8	17
115	Dissecting complicated viral spreading of enterovirus 71 using in situ bioorthogonal fluorescent labeling. Biomaterials, 2018, 181, 199-209.	5.7	15
116	Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging. Nanoscale, 2014, 6, 5416-5424.	2.8	14
117	Living Cell Multilifetime Encoding Based on Lifetime-Tunable Lattice-Strained Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 13187-13191.	4.0	13
118	Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2, 5164-5173.	2.3	13
119	Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.	1.7	13
120	Ratiometric Photoacoustic Chemical Sensor for Pd ²⁺ Ion. Analytical Chemistry, 2020, 92, 4721-4725.	3.2	13
121	Cancer-macrophage hybrid membrane-camouflaged photochlor for enhanced sonodynamic therapy against triple-negative breast cancer. Nano Research, 2022, 15, 4224-4232.	5.8	13
122	Recombinant-fully-human-antibody decorated highly-stable far-red AIEdots for <i>in vivo</i> HER-2 receptor-targeted imaging. Chemical Communications, 2018, 54, 7314-7317.	2.2	12
123	Highly luminescent near-infrared-emitting gold nanoclusters with further natural etching: photoluminescence and Hg2+ detection. Nanoscale Research Letters, 2012, 7, 348.	3.1	9
124	Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core–shell heterostructures for ultrasensitive SERS probes. Nanotechnology, 2017, 28, 245602.	1.3	9
125	Synthesis of surfactant-free Cu–Pt dendritic heterostructures with highly electrocatalytic performance for methanol oxidation reaction. Materials Research Letters, 2016, 4, 212-218.	4.1	8
126	Bio-Inspired Growth of Silver Nanoparticles on 2D Material's Scaffolds as Heterostructures with Their Enhanced Antibacterial Property. Journal of Nanoscience and Nanotechnology, 2018, 18, 3893-3900.	0.9	8

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Placental Chondroitin Sulfate A (plCSA)-Targeting Lipid-Polymer Nanoparticles. Journal of Visualized Experiments, 2018, , .	0.2	8
128	An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Materials Chemistry Frontiers, 2021, 5, 7638-7644.	3.2	7
129	Lymphatic-targeted cationic liposomes: A robust vaccine adjuvant for promoting long-term immunological memory. Journal of Controlled Release, 2015, 213, e16.	4.8	6
130	Bioorthogonal Metabolic Labeling Utilizing Protein Biosynthesis for Dynamic Visualization of Nonenveloped Enterovirus 71 Infection. ACS Applied Materials & Interfaces, 2020, 12, 3363-3370.	4.0	6
131	Optical characteristics and environmental pollutants detection of porous silicon microcavities. Science China Chemistry, 2011, 54, 1348-1356.	4.2	5
132	Ultrasmall paramagnetic near infrared quantum dots as dual modal nanoprobes. RSC Advances, 2013, 3, 21247.	1.7	5
133	An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg ²⁺ by the hydrolysis mechanism. New Journal of Chemistry, 2022, 46, 11695-11705.	1.4	5
134	Toward heterostructured transition metal hybrids with highly promoted electrochemical hydrogen evolution. RSC Advances, 2019, 9, 19924-19929.	1.7	4
135	Indocyanine Green Nanoparticles for Theranostic Applications. Nano-Micro Letters, 2013, 5, 145.	14.4	4
136	Near-infrared fluorescence imaging for vascular visualization and fungal detection in plants. Chemical Communications, 2018, 54, 13240-13243.	2.2	3
137	Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology. , 2020, , 191-253.		2
138	Co-delivery of poly I:C and STAT3 siRNA by nanovaccines effectively overcomes tumor-associated dendritic cell dysfunction and elicits anti-tumor immune response. Journal of Controlled Release, 2015, 213, e133-e134.	4.8	1
139	Neurotoxin-directed synthesis and in vitro evaluation of Au nanoclusters. RSC Advances, 2015, 5, 29647-29652.	1.7	1
140	Nanoparticles for Multi-Modality Imaging. , 2016, , 189-239.		0
141	Organic Dye-Loaded Nanoparticles for Imaging-Guided Cancer Therapy. Springer Series in Biomaterials Science and Engineering, 2016, , 217-245.	0.7	0
142	Cell/Bacteriaâ€Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy (Adv.) Tj ETQq0 () 0.rgBT /C	overlock 10 T

Correction to "Versatile Strategy To Generate a Rhodamine Triplet State as Mitochondria-Targeting 143 Visible-Light Photosensitizers for Efficient Photodynamic Therapy― ACS Applied Materials & 4.0 0 Interfaces, 2022, 14, 29464-29464.	
---	--