
Patricia Lopez-Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3574026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of steaming and boiling of root vegetables for enhancing carbohydrate content and sensory profile. Journal of Food Engineering, 2022, 312, 110754.	2.7	15
2	Impact of Glucose on the Nanostructure and Mechanical Properties of Calcium-Alginate Hydrogels. Gels, 2022, 8, 71.	2.1	7
3	Revealing the mechanisms of hydrogel formation by laccase crosslinking and regeneration of feruloylated arabinoxylan from wheat bran. Food Hydrocolloids, 2022, 128, 107575.	5.6	13
4	Assessing the volatile composition of seaweed (Laminaria digitata) suspensions as function of thermal and mechanical treatments. LWT - Food Science and Technology, 2022, 162, 113483.	2.5	3
5	Maximizing the oil content in polysaccharide-based emulsion gels for the development of tissue mimicking phantoms. Carbohydrate Polymers, 2021, 256, 117496.	5.1	12
6	Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation. Carbohydrate Polymers, 2021, 260, 117345.	5.1	12
7	Mixed legume systems of pea protein and unrefined lentil fraction: Textural properties and microstructure. LWT - Food Science and Technology, 2021, 144, 111212.	2.5	12
8	Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocolloids, 2021, 120, 106989.	5.6	15
9	Nanostructure and poroviscoelasticity in cell wall materials from onion, carrot and apple: Roles of pectin. Food Hydrocolloids, 2020, 98, 105253.	5.6	28
10	Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 2020, 145, 634-645.	3.6	93
11	Bolus rheology and ease of swallowing of particulated semi-solid foods as evaluated by an elderly panel. Food and Function, 2020, 11, 8648-8658.	2.1	30
12	Composition and rheological properties of microalgae suspensions: Impact of ultrasound processing. Algal Research, 2020, 49, 101960.	2.4	17
13	Advanced structural characterisation of agar-based hydrogels: Rheological and small angle scattering studies. Carbohydrate Polymers, 2020, 236, 115655.	5.1	38
14	Nano-/microstructure of extruded Spirulina/starch foams in relation to their textural properties. Food Hydrocolloids, 2020, 103, 105697.	5.6	9
15	Rheological and structural characterization of carrageenan emulsion gels. Algal Research, 2020, 47, 101873.	2.4	31
16	Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation. Methods in Molecular Biology, 2020, 2149, 73-87.	0.4	2
17	Interactions of arabinogalactans with bacterial cellulose during its synthesis: Structure and physical properties. Food Hydrocolloids, 2019, 96, 644-652.	5.6	6
18	Cellular barriers in apple tissue regulate polyphenol release under different food processing and <i>in vitro</i> digestion conditions. Food and Function. 2019. 10. 3008-3017.	2.1	11

PATRICIA LOPEZ-SANCHEZ

#	Article	IF	CITATIONS
19	Alginate and HM-pectin in sports-drink give rise to intra-gastric gelation <i>in vivo</i> . Food and Function, 2019, 10, 7892-7899.	2.1	17
20	Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying. Food Chemistry, 2019, 282, 58-66.	4.2	43
21	Nanorheological studies of xanthan/water solutions using magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 268-271.	1.0	5
22	Food Structure Analysis Using Light and Confocal Microscopy. Food Chemistry, Function and Analysis, 2019, , 285-308.	0.1	1
23	Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocolloids, 2018, 81, 87-95.	5.6	88
24	Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear rheology. Food Hydrocolloids, 2018, 79, 13-19.	5.6	26
25	High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocolloids, 2018, 84, 26-33.	5.6	31
26	Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose, 2017, 24, 1211-1226.	2.4	30
27	Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly. Carbohydrate Polymers, 2017, 162, 71-81.	5.1	56
28	Friction, lubrication, and in situ mechanics of poroelastic cellulose hydrogels. Soft Matter, 2017, 13, 3592-3601.	1.2	14
29	Adsorption behaviour of polyphenols on cellulose is affected by processing history. Food Hydrocolloids, 2017, 63, 496-507.	5.6	55
30	Microstructure and mechanical properties of arabinoxylan and (1,3;1,4)-β-glucan gels produced by cryo-gelation. Carbohydrate Polymers, 2016, 151, 862-870.	5.1	21
31	Pectin impacts cellulose fibre architecture and hydrogel mechanics in the absence of calcium. Carbohydrate Polymers, 2016, 153, 236-245.	5.1	32
32	Interactions of pectins with cellulose during its synthesis in the absence of calcium. Food Hydrocolloids, 2016, 52, 57-68.	5.6	65
33	Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites. Acta Biomaterialia, 2016, 29, 149-160.	4.1	27
34	Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels. Soft Matter, 2015, 11, 4002-4010.	1.2	36
35	Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydrate Polymers, 2015, 126, 108-121.	5.1	49
36	Evidence for differential interaction mechanism of plant cell wall matrix polysaccharides in hierarchically-structured bacterial cellulose. Cellulose, 2015, 22, 1541-1563.	2.4	67

3

PATRICIA LOPEZ-SANCHEZ

#	Article	IF	CITATIONS
37	Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocolloids, 2015, 44, 435-442.	5.6	51
38	Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chemistry, 2015, 168, 348-355.	4.2	60
39	Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression. PLoS ONE, 2015, 10, e0122132.	1.1	47
40	Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology, 2014, 151, 113-119.	4.8	154
41	Micromechanics and Poroelasticity of Hydrated Cellulose Networks. Biomacromolecules, 2014, 15, 2274-2284.	2.6	52
42	Structural design of natural plant-based foods to promote nutritional quality. Trends in Food Science and Technology, 2012, 24, 47-59.	7.8	16
43	Shear Elastic Deformation and Particle Packing in Plant Cell Dispersions. Food Biophysics, 2012, 7, 1-14.	1.4	38
44	Power Laws in the Elasticity and Yielding of Plant Particle Suspensions. Food Biophysics, 2012, 7, 15-27.	1.4	19
45	Carotene location in processed food samples measured by Cryo In-SEM Raman. Analyst, The, 2011, 136, 3694.	1.7	21
46	Rheology and Microstructure of Carrot and Tomato Emulsions as a Result of Highâ€Pressure Homogenization Conditions. Journal of Food Science, 2011, 76, E130-40.	1.5	75
47	High Pressure Homogenization Increases the <i>In Vitro</i> Bioaccessibility of α―and βâ€Carotene in Carrot Emulsions But Not of Lycopene in Tomato Emulsions. Journal of Food Science, 2011, 76, H215-25.	1.5	76
48	Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 2011, 91, 207-217.	1.7	145