
Cristina FerrÃ;ndiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3573455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation Tagging in Arabidopsis. Plant Physiology, 2000, 122, 1003-1014.	4.8	896
2	Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 2000, 289, 436-438.	12.6	444
3	The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Current Biology, 2003, 13, 1630-1635.	3.9	285
4	Conservation of Arabidopsis Flowering Genes in Model Legumes. Plant Physiology, 2005, 137, 1420-1434.	4.8	270
5	Control of Carpel and Fruit Development in Arabidopsis. Annual Review of Biochemistry, 1999, 68, 321-354.	11.1	206
6	INDEHISCENT and SPATULA Interact to Specify Carpel and Valve Margin Tissue and Thus Promote Seed Dispersal in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3641-3653.	6.6	165
7	How Floral Meristems are Built. Plant Molecular Biology, 2006, 60, 855-870.	3.9	160
8	Synergistic Activation of Seed Storage Protein Gene Expression in Arabidopsis by ABI3 and Two bZIPs Related to OPAQUE2. Journal of Biological Chemistry, 2003, 278, 21003-21011.	3.4	154
9	Regulation of fruit dehiscence in Arabidopsis. Journal of Experimental Botany, 2002, 53, 2031-2038.	4.8	147
10	The <i>NGATHA</i> Genes Direct Style Development in the <i>Arabidopsis</i> Gynoecium Â. Plant Cell, 2009, 21, 1394-1409.	6.6	135
11	Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 2006, 142, 972-983.	4.8	121
12	Analysis ofPEAM4, the peaAP1functional homologue, supports a model forAP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant Journal, 2001, 25, 441-451.	5.7	110
13	Common regulatory networks in leaf and fruit patterning revealed by mutations in the <i>Arabidopsis ASYMMETRIC LEAVES1</i> gene. Development (Cambridge), 2007, 134, 2663-2671.	2.5	107
14	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
15	Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nature Communications, 2018, 9, 565.	12.8	98
16	The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics, 2017, 13, e1006726.	3.5	98
17	Dynamic, auxin-responsive plasma membrane-to-nucleus movement of <i>Arabidopsis</i> BRX. Development (Cambridge), 2009, 136, 2059-2067.	2.5	92
18	Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 2017, 35, 68-75.	7.1	87

Cristina FerrÃindiz

#	Article	IF	CITATIONS
19	VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nature Communications, 2012, 3, 797.	12.8	85
20	Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany, 2006, 57, 3457-3469.	4.8	79
21	FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. Journal of Experimental Botany, 2017, 68, 3391-3403.	4.8	79
22	Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. Journal of Experimental Botany, 2014, 65, 1193-1203.	4.8	74
23	Instructive roles for hormones in plant development. International Journal of Developmental Biology, 2009, 53, 1597-1608.	0.6	70
24	Carpel Development. Advances in Botanical Research, 2010, 55, 1-73.	1.1	65
25	Role of the FUL–SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany, 2013, 65, 4505-4513.	4.8	65
26	The <scp>NTT</scp> transcription factor promotes replum development in <scp>A</scp> rabidopsis fruits. Plant Journal, 2014, 80, 69-81.	5.7	61
27	Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in <i>Medicago truncatula</i> . Plant Journal, 2009, 60, 102-111.	5.7	57
28	Leaf expansion in Arabidopsis is controlled by a <scp>TCPâ€NGA</scp> regulatory module likely conserved in distantly related species. Physiologia Plantarum, 2015, 155, 21-32.	5.2	56
29	The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Annals of Botany, 2014, 114, 1535-1544.	2.9	55
30	A Change in <i>SHATTERPROOF</i> Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in <i>Medicago</i> Genus Â. Plant Physiology, 2013, 162, 907-917.	4.8	54
31	The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science, 2017, 8, 814.	3.6	51
32	Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice. Plant Physiology, 2018, 176, 1646-1664.	4.8	49
33	Functional analyses of AGAMOUS family members in <i>Nicotiana benthamiana</i> clarify the evolution of early and late roles of Câ€function genes in eudicots. Plant Journal, 2012, 71, 990-1001.	5.7	47
34	Pea <i>VEGETATIVE2</i> Is an <i>FD</i> Homolog That Is Essential for Flowering and Compound Inflorescence Development. Plant Cell, 2015, 27, 1046-1060.	6.6	46
35	PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Developmental Biology, 2006, 289, 346-359.	2.0	41
36	The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 2014, 5, 210.	3.6	38

CRISTINA FERRÃINDIZ

#	Article	IF	CITATIONS
37	Genetic and genomic analysis of legume flowers and seeds. Current Opinion in Plant Biology, 2006, 9, 133-141.	7.1	35
38	Functional Conservation of PISTILLATA Activity in a Pea Homolog Lacking the PI Motif. Plant Physiology, 2005, 139, 174-185.	4.8	34
39	Rice <i>SEPALLATA</i> genes <i>OsMADS5</i> and <i>OsMADS34</i> cooperate to limit inflorescence branching by repressing the <i>TERMINAL FLOWER1</i> â€like gene <i>RCN4</i> . New Phytologist, 2022, 233, 1682-1700.	7.3	34
40	Arabidopsis <i><scp>COGWHEEL</scp>1</i> links light perception and gibberellins with seed tolerance to deterioration. Plant Journal, 2016, 87, 583-596.	5.7	28
41	Flower Development: Open Questions and Future Directions. Methods in Molecular Biology, 2014, 1110, 103-124.	0.9	26
42	Gln5 Selectively Monodansylated Substance P as a Sensitive Tool for Interaction Studies with Membranes. Biochemical and Biophysical Research Communications, 1994, 203, 359-365.	2.1	25
43	The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist, 2014, 202, 1001-1013.	7.3	23
44	New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development (Cambridge), 2019, 146, .	2.5	22
45	Identification of <i>Stipules reduced,</i> a leaf morphology gene in pea (<i>Pisum sativum</i>). New Phytologist, 2018, 220, 288-299.	7.3	21
46	Differential expression of the ornithine decarboxylase gene during carposporogenesis in the thallus of the red seaweed Grateloupia imbricata (Halymeniaceae). Journal of Plant Physiology, 2009, 166, 1745-1754.	3.5	19
47	Inflorescence Meristem Fate Is Dependent on Seed Development and FRUITFULL in Arabidopsis thaliana. Frontiers in Plant Science, 2019, 10, 1622.	3.6	19
48	A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest inÂArabidopsis. Current Biology, 2022, 32, 749-762.e3.	3.9	19
49	A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. Plant Cell, 2021, 33, 3645-3657.	6.6	17
50	Identification of Players Controlling Meristem Arrest Downstream of the FRUITFULL-APETALA2 Pathway. Plant Physiology, 2020, 184, 945-959.	4.8	16
51	Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones. Plant Reproduction, 2017, 30, 19-39.	2.2	12
52	Expression and function of the <scp>bHLH</scp> genes <i><scp>ALCATRAZ</scp></i> and <i><scp>SPATULA</scp></i> in selected Solanaceae species. Plant Journal, 2019, 99, 686-702.	5.7	12
53	Gynoecium Patterning in Arabidopsis: A Basic Plan behind a Complex Structure. , 0, , 35-69.		11
54	Evolution of Class II <i>TCP</i> genes in perianth bearing Piperales and their contribution to the bilateral calyx in <i>Aristolochia</i> . New Phytologist, 2020, 228, 752-769.	7.3	10

Cristina FerrÃindiz

#	Article	IF	CITATIONS
55	Nonradioactive In Situ Hybridization of RNA Probes to Sections of Plant Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4943-pdb.prot4943.	0.3	6
56	Functional Genomics and Genetic Control of Flower and Fruit Development in Medicago truncatula: An Overview. Methods in Molecular Biology, 2018, 1822, 273-290.	0.9	6
57	Expression of gynoecium patterning transcription factors in Aristolochia fimbriata (Aristolochiaceae) and their contribution to gynostemium development. EvoDevo, 2020, 11, 4.	3.2	6
58	Genetic and Phenotypic Analyses of Carpel Development in Arabidopsis. Methods in Molecular Biology, 2014, 1110, 231-249.	0.9	5
59	The Evolution of Plant Development: Past, Present and Future: Preface. Annals of Botany, 2007, 100, 599-601.	2.9	4
60	Preparation and Hydrolysis of Digoxygenin-Labeled Probes for In Situ Hybridization of Plant Tissues. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4942-pdb.prot4942.	0.3	3
61	Comparative anatomy and genetic bases of fruit development in selected Rubiaceae (Gentianales). American Journal of Botany, 2021, 108, 1838-1860.	1.7	3
62	Fruit Development: Turning Sticks into Hearts. Current Biology, 2019, 29, R337-R339.	3.9	2
63	The amphipathic peptide mellitin as a tool to study the membrane-dependent activation of tissue transglutaminase. International Journal of Peptide Research and Therapeutics, 2001, 8, 69-76.	0.1	0
64	Title is missing!. International Journal of Peptide Research and Therapeutics, 2001, 8, 69-76.	0.1	0
65	The Role of MADS-Box Genes in the Control of Flower and Fruit Development in Arabidopsis. , 2003, , 20-27.		Ο