Samir Mitragotri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3573318/publications.pdf

Version: 2024-02-01

2178 2427 44,327 316 97 citations h-index papers

g-index 326 326 326 39971 docs citations times ranked citing authors all docs

202

#	Article	IF	Citations
1	Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4930-4934.	7.1	1,796
2	Physical approaches to biomaterial design. Nature Materials, 2009, 8, 15-23.	27. 5	1,266
3	Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nature Reviews Drug Discovery, 2014, 13, 655-672.	46.4	1,261
4	Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery, 2004, 3, 115-124.	46.4	1,121
5	Nanoparticles in the clinic: An update. Bioengineering and Translational Medicine, 2019, 4, e10143.	7.1	1,073
6	Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. Journal of Controlled Release, 2007, 121, 3-9.	9.9	1,072
7	A Reversibly Switching Surface. Science, 2003, 299, 371-374.	12.6	1,058
8	Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nature Reviews Drug Discovery, 2011, 10, 521-535.	46.4	1,038
9	Nanoparticles in the clinic. Bioengineering and Translational Medicine, 2016, 1, 10-29.	7.1	1,003
10	Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9, 223-243.	11.9	878
11	MoS ₂ Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano, 2014, 8, 3992-4003.	14.6	870
12	Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery, 2005, 4, 255-260.	46.4	794
13	Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharmaceutical Research, 2008, 25, 1815-1821.	3.5	729
14	Making polymeric micro- and nanoparticles of complex shapes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11901-11904.	7.1	664
15	Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10753-10758.	7.1	554
16	The evolution of commercial drug delivery technologies. Nature Biomedical Engineering, 2021, 5, 951-967.	22.5	539
17	Shape Induced Inhibition of Phagocytosis of Polymer Particles. Pharmaceutical Research, 2009, 26, 244-249.	3.5	522
18	Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-targeted Carriers. Molecular Therapy, 2008, 16, 1450-1458.	8.2	506

#	Article	IF	CITATIONS
19	Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release, 2016, 238, 176-185.	9.9	502
20	Targeting Strategies for Tissue-Specific Drug Delivery. Cell, 2020, 181, 151-167.	28.9	474
21	Elasticity of Nanoparticles Influences Their Blood Circulation, Phagocytosis, Endocytosis, and Targeting. ACS Nano, 2015, 9, 3169-3177.	14.6	470
22	Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3270-3275.	7.1	456
23	Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects. Current Pharmaceutical Design, 2010, 16, 2298-2307.	1.9	451
24	Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 2013, 15, 253-282.	12.3	437
25	Non-invasive delivery strategies for biologics. Nature Reviews Drug Discovery, 2019, 18, 19-40.	46.4	397
26	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	9.9	394
27	A Review of Clinical Translation of Inorganic Nanoparticles. AAPS Journal, 2015, 17, 1041-1054.	4.4	392
28	Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release, 2010, 147, 408-412.	9.9	385
29	Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, 2008, 364, 227-236.	5. 2	382
30	An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 2014, 190, 15-28.	9.9	379
31	Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nature Chemistry, 2017, 9, 537-545.	13.6	353
32	Low-frequency sonophoresis. Advanced Drug Delivery Reviews, 2004, 56, 589-601.	13.7	349
33	Immunization without needles. Nature Reviews Immunology, 2005, 5, 905-916.	22.7	337
34	Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21495-21499.	7.1	326
35	Design principles of chemical penetration enhancers for transdermal drug delivery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4688-4693.	7.1	321
36	A Mechanistic Study of Ultrasonicallyâ€Enhanced Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 1995, 84, 697-706.	3.3	304

#	Article	IF	Citations
37	Impact of particle elasticity on particle-based drug delivery systems. Advanced Drug Delivery Reviews, 2017, 108, 51-67.	13.7	302
38	Mathematical models of skin permeability: An overview. International Journal of Pharmaceutics, 2011, 418, 115-129.	5.2	294
39	Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries. ACS Nano, 2014, 8, 11243-11253.	14.6	284
40	Current status and future prospects of needle-free liquid jet injectors. Nature Reviews Drug Discovery, 2006, 5, 543-548.	46.4	283
41	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-6654.	14.6	279
42	Ionic liquids for oral insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7296-7301.	7.1	277
43	Delivering Nanoparticles to Lungs while Avoiding Liver and Spleen through Adsorption on Red Blood Cells. ACS Nano, 2013, 7, 11129-11137.	14.6	276
44	Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews, 2019, 143, 3-21.	13.7	276
45	Materials for oral delivery of proteins and peptides. Nature Reviews Materials, 2020, 5, 127-148.	48.7	275
46	Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Advanced Drug Delivery Reviews, 2016, 106, 88-103.	13.7	273
47	Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. Journal of Controlled Release, 2003, 86, 69-92.	9.9	268
48	Flow and adhesion of drug carriers in blood vessels depend on their shape: A study using model synthetic microvascular networks. Journal of Controlled Release, 2010, 146, 196-200.	9.9	265
49	Macrophages Recognize Size and Shape of Their Targets. PLoS ONE, 2010, 5, e10051.	2.5	265
50	lonic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13313-13318.	7.1	258
51	Discovery of transdermal penetration enhancers by high-throughput screening. Nature Biotechnology, 2004, 22, 192-197.	17.5	248
52	Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nature Communications, 2018, 9, 2684.	12.8	247
53	Hydrogels in the clinic. Bioengineering and Translational Medicine, 2020, 5, e10158.	7.1	244
54	Transdermal monitoring of glucose and other analytes using ultrasound. Nature Medicine, 2000, 6, 347-350.	30.7	237

#	Article	IF	Citations
55	Shape and size-dependent immune response to antigen-carrying nanoparticles. Journal of Controlled Release, 2015, 220, 141-148.	9.9	235
56	Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles. Journal of Controlled Release, 2014, 190, 531-541.	9.9	231
57	An Experimental and Theoretical Analysis of Ultrasound-Induced Permeabilization of Cell Membranes. Biophysical Journal, 2003, 84, 3087-3101.	0.5	227
58	Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 1247-1256.	13.7	226
59	Polymer particles that switch shape in response to a stimulus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11205-11210.	7.1	225
60	Cellular backpacks for macrophage immunotherapy. Science Advances, 2020, 6, eaaz6579.	10.3	224
61	Designer Biomaterials for Nanomedicine. Advanced Functional Materials, 2009, 19, 3843-3854.	14.9	219
62	Synergistic effect of enhancers for transdermal drug delivery. Pharmaceutical Research, 2000, 17, 1354-1359.	3.5	189
63	Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. Journal of Controlled Release, 2004, 100, 111-119.	9.9	185
64	Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15816-15821.	7.1	181
65	Nanoparticles in the clinic: An update post <scp>COVID</scp> ‶9 vaccines. Bioengineering and Translational Medicine, 2021, 6, e10246.	7.1	17 3
66	Interactions of Inertial Cavitation Bubbles with Stratum Corneum Lipid Bilayers during Low-Frequency Sonophoresis. Biophysical Journal, 2003, 85, 3502-3512.	0.5	170
67	Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale, 2018, 10, 15350-15364.	5.6	162
68	Vascular Targeting of Nanocarriers: Perplexing Aspects of the Seemingly Straightforward Paradigm. ACS Nano, 2014, 8, 4100-4132.	14.6	154
69	Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nature Nanotechnology, 2017, 12, 589-594.	31.5	154
70	Transdermal Protein Delivery Using Choline and Geranate (CAGE) Deep Eutectic Solvent. Advanced Healthcare Materials, 2017, 6, 1601411.	7.6	154
71	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
72	Low-frequency sonophoresis: Current status and future prospects. Advanced Drug Delivery Reviews, 2008, 60, 1218-1223.	13.7	147

#	Article	IF	CITATIONS
73	Transdermal insulin delivery using choline-based ionic liquids (CAGE). Journal of Controlled Release, 2018, 286, 137-144.	9.9	147
74	Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Advanced Drug Delivery Reviews, 2020, 165-166, 15-40.	13.7	146
75	Determination of threshold energy dose for ultrasound-induced transdermal drug transport. Journal of Controlled Release, 2000, 63, 41-52.	9.9	142
76	Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4255-4260.	7.1	139
77	Cellâ€Based Drug Delivery Devices Using Phagocytosisâ€Resistant Backpacks. Advanced Materials, 2011, 23, H105-9.	21.0	134
78	Materials for Immunotherapy. Advanced Materials, 2020, 32, e1901633.	21.0	132
79	Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. Journal of Controlled Release, 2015, 199, 29-36.	9.9	130
80	Frequency dependence of sonophoresis. Pharmaceutical Research, 2001, 18, 1694-1700.	3. 5	127
81	Ionic liquids for addressing unmet needs in healthcare. Bioengineering and Translational Medicine, 2018, 3, 7-25.	7.1	126
82	Theoretical Description of Transdermal Transport of Hydrophilic Permeants: Application to Lowâ€Frequency Sonophoresis. Journal of Pharmaceutical Sciences, 2001, 90, 545-568.	3.3	124
83	Design Principles of Ionic Liquids for Transdermal Drug Delivery. Advanced Materials, 2019, 31, e1901103.	21.0	123
84	Synergistic Effects of Chemical Enhancers and Therapeutic Ultrasound on Transdermal Drug Delivery. Journal of Pharmaceutical Sciences, 1996, 85, 670-679.	3.3	119
85	Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. Pharmaceutical Research, 2002, 19, 1673-1679.	3.5	119
86	Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model. Journal of Controlled Release, 2005, 106, 361-373.	9.9	119
87	Devices for overcoming biological barriers: The use of physical forces to disrupt the barriers. Advanced Drug Delivery Reviews, 2013, 65, 100-103.	13.7	119
88	Safe and Effective Permeation Enhancers for Oral Drug Delivery. Pharmaceutical Research, 2008, 25, 1782-1788.	3.5	115
89	Peptides as skin penetration enhancers: Mechanisms of action. Journal of Controlled Release, 2015, 199, 168-178.	9.9	115
90	Recent Advances in Ionic Liquids in Biomedicine. Advanced Science, 2021, 8, e2004819.	11.2	112

#	Article	IF	Citations
91	Dynamic control of needle-free jet injection. Journal of Controlled Release, 2009, 135, 104-112.	9.9	111
92	Synergistic Effect of Lowâ€Frequency Ultrasound and Sodium Lauryl Sulfate on Transdermal Transport. Journal of Pharmaceutical Sciences, 2000, 89, 892-900.	3.3	109
93	Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. Journal of Controlled Release, 2004, 98, 37-45.	9.9	109
94	Low-Frequency Sonophoresis: Ultrastructural Basis for Stratum Corneum Permeability Assessed Using Quantum Dots. Journal of Investigative Dermatology, 2006, 126, 1095-1101.	0.7	109
95	Relationships between skin's electrical impedance and permeability in the presence of chemical enhancers. Journal of Controlled Release, 2006, 110, 307-313.	9.9	104
96	Choline and Geranate Deep Eutectic Solvent as a Broadâ€Spectrum Antiseptic Agent for Preventive and Therapeutic Applications. Advanced Healthcare Materials, 2016, 5, 1282-1289.	7.6	104
97	Investigations of the role of cavitation in lowâ€frequency sonophoresis using acoustic spectroscopy. Journal of Pharmaceutical Sciences, 2002, 91, 444-453.	3.3	103
98	Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. Journal of Controlled Release, 2014, 173, 67-74.	9.9	100
99	Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Science Advances, 2019, 5, eaax9250.	10.3	100
100	Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioengineering and Translational Medicine, 2020, 5, e10153.	7.1	99
101	Nanocarrierâ€Mediated Cytosolic Delivery of Biopharmaceuticals. Advanced Functional Materials, 2020, 30, 1910566.	14.9	99
102	Transdermal delivery of heparin and low-molecular weight heparin using low-frequency ultrasound. , 2001, $18,1151-1156.$		98
103	Platelet Mimetic Particles for Targeting Thrombi in Flowing Blood. Advanced Materials, 2012, 24, 3864-3869.	21.0	97
104	Synergistic Targeting of Cell Membrane, Cytoplasm, and Nucleus of Cancer Cells Using Rod-Shaped Nanoparticles. ACS Nano, 2013, 7, 9558-9570.	14.6	97
105	Viral <scp>vectorâ€based</scp> gene therapies in the clinic. Bioengineering and Translational Medicine, 2022, 7, e10258.	7.1	97
106	Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Experimental Biology and Medicine, 2007, 232, 958-66.	2.4	97
107	Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromolecular Rapid Communications, 2010, 31, 142-148.	3.9	96
108	Approaches to synthetic platelet analogs. Biomaterials, 2013, 34, 526-541.	11.4	96

#	Article	IF	CITATIONS
109	Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Advanced Drug Delivery Reviews, 2020, 153, 87-108.	13.7	96
110	Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. International Journal of Biological Macromolecules, 2019, 122, 338-347.	7.5	95
111	Covalently Crosslinked Hydrogels via Stepâ€Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Advanced Materials, 2021, 33, e2006362.	21.0	95
112	Synergistic Effect of Lowâ€Frequency Ultrasound and Surfactants on Skin Permeability. Journal of Pharmaceutical Sciences, 2002, 91, 91-100.	3.3	94
113	Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE). ACS Biomaterials Science and Engineering, 2018, 4, 2370-2379.	5.2	94
114	Continuous Inertial Focusing and Separation of Particles by Shape. Physical Review X, 2012, 2, .	8.9	93
115	Topical delivery of siRNA into skin using SPACE-peptide carriers. Journal of Controlled Release, 2014, 179, 33-41.	9.9	91
116	A theoretical analysis of permeation of small hydrophobic solutes across the stratum corneum based on Scaled Particle Theory. Journal of Pharmaceutical Sciences, 2002, 91, 744-752.	3.3	90
117	Spontaneous shape reconfigurations in multicompartmental microcylinders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16057-16062.	7.1	90
118	Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomaterials Science and Engineering, 2020, 6, 4916-4928.	5.2	90
119	The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells. PLoS ONE, 2016, 11, e0152074.	2.5	90
120	Synergistic antitumor activity of camptothecin–doxorubicin combinations and their conjugates with hyaluronic acid. Journal of Controlled Release, 2015, 210, 198-207.	9.9	89
121	Jet injection into polyacrylamide gels: investigation of jet injection mechanics. Journal of Biomechanics, 2004, 37, 1181-1188.	2.1	88
122	In Drug Delivery, Shape Does Matter. Pharmaceutical Research, 2009, 26, 232-234.	3.5	88
123	Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opinion on Drug Delivery, 2006, 3, 713-726.	5.0	86
124	Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells. Scientific Reports, 2018, 8, 1615.	3.3	83
125	Macrophage-mediated delivery of light activated nitric oxide prodrugs with spatial, temporal and concentration control. Chemical Science, 2018, 9, 3729-3741.	7.4	83
126	Description of Transdermal Transport of Hydrophilic Solutes during Low-Frequency Sonophoresis Based on a Modified Porous Pathway Model. Journal of Pharmaceutical Sciences, 2003, 92, 381-393.	3.3	82

#	Article	IF	Citations
127	Intestinal mucoadhesive devices for oral delivery of insulin. Bioengineering and Translational Medicine, 2016, 1, 338-346.	7.1	81
128	An Analysis of the Size Selectivity of Solute Partitioning, Diffusion, and Permeation across Lipid Bilayers. Biophysical Journal, 1999, 77, 1268-1283.	0.5	80
129	Synergistic effect of electric field and ultrasound on transdermal transport. Pharmaceutical Research, 1996, 13, 633-638.	3.5	79
130	Combined effect of low-frequency ultrasound and iontophoresis: applications for transdermal heparin delivery. Pharmaceutical Research, 2000, 17, 1151-1154.	3.5	79
131	Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge—an ex vivo and in silico approach. Journal of Controlled Release, 2012, 159, 128-134.	9.9	79
132	Topical Delivery of Anti-sense Oligonucleotides Using Low-Frequency Sonophoresis. Pharmaceutical Research, 2004, 21, 2219-2225.	3.5	78
133	Needle-free liquid jet injections: mechanisms and applications. Expert Review of Medical Devices, 2006, 3, 565-574.	2.8	77
134	Organic nanoparticles for drug delivery and imaging. MRS Bulletin, 2014, 39, 219-223.	3.5	77
135	Effect of Chemical Permeation Enhancers on Skin Permeability: In silico screening using Molecular Dynamics simulations. Scientific Reports, 2019, 9, 1456.	3.3	77
136	Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. Journal of Controlled Release, 2006, 115, 85-93.	9.9	76
137	Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials, 2015, 68, 1-8.	11.4	76
138	A microfluidic model of human brain (\hat{l} /4HuB) for assessment of blood brain barrier. Bioengineering and Translational Medicine, 2019, 4, e10126.	7.1	76
139	Drug Delivery Research for the Future: Expanding the Nano Horizons and Beyond. Journal of Controlled Release, 2017, 246, 183-184.	9.9	7 5
140	Nanocrystals: A perspective on translational research and clinical studies. Bioengineering and Translational Medicine, 2019, 4, 5-16.	7.1	75
141	Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. Journal of Controlled Release, 2022, 345, 512-536.	9.9	75
142	Designing micro- and nano-particles for treating rheumatoid arthritis. Archives of Pharmacal Research, 2011, 34, 1887-1897.	6.3	74
143	Mechanistic study of transdermal delivery of macromolecules assisted by ionic liquids. Journal of Controlled Release, 2019, 311-312, 162-169.	9.9	7 3
144	Evaluation of chemical enhancers in the transdermal delivery of lidocaine. International Journal of Pharmaceutics, 2006, 308, 33-39.	5.2	72

#	Article	IF	Citations
145	Understanding Intracellular Transport Processes Pertinent to Synthetic Gene Delivery via Stochastic Simulations and Sensitivity Analyses. Biophysical Journal, 2007, 92, 831-846.	0.5	72
146	lonic liquid-mediated delivery of insulin to buccal mucosa. Journal of Controlled Release, 2020, 327, 26-34.	9.9	71
147	Nucleic acid delivery into skin for the treatment of skin disease: Proofs-of-concept, potential impact, and remaining challenges. Journal of Controlled Release, 2015, 219, 445-456.	9.9	70
148	A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer. Journal of Controlled Release, 2017, 267, 191-202.	9.9	70
149	Transdermal immunomodulation: Principles, advances and perspectives. Advanced Drug Delivery Reviews, 2018, 127, 3-19.	13.7	70
150	Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17727-17736.	7.1	70
151	Therapeutic opportunities in biological responses of ultrasound. Ultrasonics, 2008, 48, 271-278.	3.9	69
152	Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. Journal of Controlled Release, 2013, 172, 753-762.	9.9	69
153	A polymer-based systemic hemostatic agent. Science Advances, 2020, 6, eaba0588.	10.3	69
154	Cell therapies in the clinic. Bioengineering and Translational Medicine, 2021, 6, e10214.	7.1	68
155	Polymer Nanoneedleâ€Mediated Intracellular Drug Delivery. Small, 2011, 7, 2094-2100.	10.0	67
156	Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics, 2020, 12, 440.	4.5	66
157	Non-affinity factors modulating vascular targeting of nano- and microcarriers. Advanced Drug Delivery Reviews, 2016, 99, 97-112.	13.7	65
158	A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. Journal of Controlled Release, 2013, 172, 541-549.	9.9	64
159	Diagnostic opportunities based on skin biomarkers. European Journal of Pharmaceutical Sciences, 2013, 50, 546-556.	4.0	64
160	A Model for Intracellular Trafficking of Adenoviral Vectors. Biophysical Journal, 2005, 89, 1574-1588.	0.5	63
161	Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels. Journal of Applied Physiology, 2000, 89, 961-966.	2.5	62
162	Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annual Review of Biomedical Engineering, 2021, 23, 225-248.	12.3	62

#	Article	IF	Citations
163	High throughput screening of transdermal formulations. Pharmaceutical Research, 2002, 19, 655-660.	3.5	61
164	Transcutaneous Immunization: An Overview of Advantages, Disease Targets, Vaccines, and Delivery Technologies. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 175-201.	6.8	61
165	Engineering of Living Cells with Polyphenolâ€Functionalized Biologically Active Nanocomplexes. Advanced Materials, 2020, 32, e2003492.	21.0	60
166	A review on engineering polymer drug conjugates to improve combination chemotherapy. Current Opinion in Colloid and Interface Science, 2017, 31, 75-85.	7.4	59
167	Transdermal delivery of nobiletin using ionic liquids. Scientific Reports, 2019, 9, 20191.	3.3	58
168	Non-spherical micro- and nanoparticles for drug delivery: Progress over 15Âyears. Advanced Drug Delivery Reviews, 2021, 177, 113807.	13.7	58
169	An Explanation for the Variation of the Sonophoretic Transdermal Transport Enhancement from Drug to Drug. Journal of Pharmaceutical Sciences, 1997, 86, 1190-1192.	3.3	57
170	Mechanistic Analysis of Chemical Permeation Enhancers for Oral Drug Delivery. Pharmaceutical Research, 2008, 25, 1412-1419.	3.5	57
171	Therapeutic RNAi robed with ionic liquid moieties as a simple, scalable prodrug platform for treating skin disease. Journal of Controlled Release, 2016, 242, 80-88.	9.9	57
172	Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nature Biomedical Engineering, 2021, 5, 441-454.	22.5	57
173	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	31.5	57
174	Intestinal patches for oral drug delivery. Pharmaceutical Research, 2002, 19, 391-395.	3.5	55
175	Physical triggering strategies for drug delivery. Advanced Drug Delivery Reviews, 2020, 158, 36-62.	13.7	55
176	Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. Journal of Controlled Release, 2020, 322, 602-609.	9.9	55
177	Topical delivery of siRNA into skin using ionic liquids. Journal of Controlled Release, 2020, 323, 475-482.	9.9	55
178	<p>Topical Application of Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells in Combination with Sponge Spicules for Treatment of Photoaging</p> . International Journal of Nanomedicine, 2020, Volume 15, 2859-2872.	6.7	54
179	Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic. Journal of Controlled Release, 2015, 206, 30-36.	9.9	53
180	Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Nanoscale, 2020, 12, 6318-6333.	5.6	53

#	Article	IF	Citations
181	Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. International Journal of Pharmaceutics, 2020, 577, 118995.	5.2	53
182	Effect of therapeutic ultrasound on partition and diffusion coefficients in human stratum corneum. Journal of Controlled Release, 2001, 71, 23-29.	9.9	52
183	DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. Journal of Controlled Release, 2016, 229, 154-162.	9.9	52
184	Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations. Science Advances, 2020, 6, eabb6049.	10.3	52
185	Influence of Particle Geometry on Gastrointestinal Transit and Absorption following Oral Administration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42492-42502.	8.0	51
186	Transdermal extraction of analytes using low-frequency ultrasound. Pharmaceutical Research, 2000, 17, 466-470.	3.5	50
187	Intestinal patch systems for oral drug delivery. Current Opinion in Pharmacology, 2017, 36, 58-65.	3.5	49
188	Ionic Liquids and Deep Eutectic Solvents for Enhanced Delivery of Antibodies in the Gastrointestinal Tract. Advanced Functional Materials, 2021, 31, 2002912.	14.9	49
189	Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. Journal of Controlled Release, 2019, 297, 71-78.	9.9	47
190	Low-molecular-weight polymer–drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations. Nanomedicine, 2016, 11, 1139-1151.	3.3	46
191	Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials, 2020, 242, 119929.	11.4	46
192	Delivery of Exenatide and Insulin Using Mucoadhesive Intestinal Devices. Annals of Biomedical Engineering, 2016, 44, 1993-2007.	2.5	44
193	Breaking the skin barrier. Advanced Drug Delivery Reviews, 2004, 56, 555-556.	13.7	43
194	De Novo Design of Skinâ€Penetrating Peptides for Enhanced Transdermal Delivery of Peptide Drugs. Advanced Healthcare Materials, 2016, 5, 602-609.	7.6	43
195	Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Advanced Drug Delivery Reviews, 2021, 178, 113992.	13.7	43
196	Ultrasound-Enhanced Drug Transport and Distribution in the Brain. AAPS PharmSciTech, 2010, 11, 1005-1017.	3.3	42
197	The Influence of Water on Choline-Based Ionic Liquids. ACS Biomaterials Science and Engineering, 2019, 5, 3645-3653.	5.2	42
198	Permeation of Insulin, Calcitonin and Exenatide across Caco-2 Monolayers: Measurement Using a Rapid, 3-Day System. PLoS ONE, 2013, 8, e57136.	2.5	42

#	Article	IF	Citations
199	Treating Tumors at Low Drug Doses Using an Aptamer–Peptide Synergistic Drug Conjugate. Angewandte Chemie - International Edition, 2019, 58, 1437-1441.	13.8	41
200	In situ determination of partition and diffusion coefficients in the lipid bilayers of stratum corneum., $2000, 17, 1026-1029.$		40
201	A theoretical analysis of low-frequency sonophoresis: dependence of transdermal transport pathways on frequency and energy density. Pharmaceutical Research, 2002, 19, 1841-1846.	3.5	40
202	Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. Journal of Controlled Release, 2019, 305, 130-154.	9.9	40
203	Synthesis of Proteinâ€Based, Rodâ€Shaped Particles from Spherical Templates using Layerâ€byâ€Layer Assembly. Advanced Materials, 2013, 25, 2723-2727.	21.0	39
204	Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnology Advances, 2020, 42, 107339.	11.7	39
205	Polymer Microparticles Exhibit Size and Shape Dependent Accumulation around the Nucleus after Endocytosis. Advanced Functional Materials, 2012, 22, 3759-3764.	14.9	38
206	Synergistic effects of chemical enhancers on skin permeability: A case study of sodium lauroylsarcosinate and sorbitan monolaurate. European Journal of Pharmaceutical Sciences, 2007, 31, 1-7.	4.0	37
207	Topical delivery of Cyclosporine A into the skin using SPACE-peptide. Journal of Controlled Release, 2015, 199, 190-197.	9.9	37
208	Intestinal micropatches for oral insulin delivery. Journal of Drug Targeting, 2017, 25, 608-615.	4.4	36
209	Comparison of Ionic Liquids and Chemical Permeation Enhancers for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004257.	14.9	36
210	Oral ionic liquid for the treatment of diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25042-25047.	7.1	35
211	Coupled influences of particle shape, surface property and flow hydrodynamics on rod-shaped colloid transport in porous media. Journal of Colloid and Interface Science, 2020, 577, 471-480.	9.4	35
212	Molecular mechanism of the skin permeation enhancing effect of ethanol: a molecular dynamics study. RSC Advances, 2020, 10, 12234-12248.	3.6	35
213	Delivery Strategies for Skin: Comparison of Nanoliter Jets, Needles and Topical Solutions. Annals of Biomedical Engineering, 2020, 48, 2028-2039.	2.5	34
214	Identification of Peptide Ligands Facilitating Nanoparticle Attachment to Erythrocytes. Biotechnology Progress, 2008, 23, 749-754.	2.6	33
215	Effect of Surfactant Mixtures on Skin Structure and Barrier Properties. Annals of Biomedical Engineering, 2011, 39, 1215-1223.	2.5	33
216	Reply to Rogers and Gurau: Definitions of ionic liquids and deep eutectic solvents. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11000-E11001.	7.1	33

#	Article	IF	CITATIONS
217	Protein-avoidant ionic liquid (PAIL)–coated nanoparticles to increase bloodstream circulation and drive biodistribution. Science Advances, 2020, 6, .	10.3	33
218	Design principles of drug combinations for chemotherapy. Journal of Controlled Release, 2020, 323, 36-46.	9.9	33
219	Delivery of polymeric particles into skin using needle-free liquid jet injectors. Journal of Controlled Release, 2011, 153, 249-254.	9.9	32
220	Clinical translation of choline and geranic acid deep eutectic solvent. Bioengineering and Translational Medicine, 2021, 6, e10191.	7.1	32
221	Porous Resins as a Cavitation Enhancer for Lowâ€frequency Sonophoresis. Journal of Pharmaceutical Sciences, 2002, 91, 753-759.	3.3	31
222	<scp>RNA</scp> therapeutics in the clinic. Bioengineering and Translational Medicine, 2023, 8, .	7.1	31
223	Delivery of Nanoparticles and Macromolecules across the Blood–Brain Barrier. Advanced Therapeutics, 2020, 3, 1900073.	3.2	30
224	Shape-based separation of synthetic microparticles. Nature Materials, 2019, 18, 82-89.	27.5	29
225	Incorporation of lipophilic pathways into the porous pathway model for describing skin permeabilization during low-frequency sonophoresis. Journal of Controlled Release, 2002, 83, 183-188.	9.9	28
226	Sonophoresis: a 50-year journey. Drug Discovery Today, 2004, 9, 735-736.	6.4	28
227	Dynamics and Spatial Organization of Endosomes in Mammalian Cells. Physical Review Letters, 2005, 95, 158101.	7.8	28
228	Modulation of Gastrointestinal Mucus Properties with Ionic Liquids for Drug Delivery. Advanced Healthcare Materials, 2021, 10, e2002192.	7.6	27
229	Microfluidic coâ€culture devices to assess penetration of nanoparticles into cancer cell mass. Bioengineering and Translational Medicine, 2017, 2, 268-277.	7.1	26
230	Skin delivery of hyaluronic acid by the combined use of sponge spicules and flexible liposomes. Biomaterials Science, 2019, 7, 1299-1310.	5.4	25
231	Percutaneous liquid ablation agent for tumor treatment and drug delivery. Science Translational Medicine, 2021, 13, .	12.4	25
232	Temperature dependence of skin permeability to hydrophilic and hydrophobic solutes. Journal of Pharmaceutical Sciences, 2007, 96, 1832-1839.	3.3	24
233	Skin Delivery of siRNA Using Sponge Spicules in Combination with Cationic Flexible Liposomes. Molecular Therapy - Nucleic Acids, 2020, 20, 639-648.	5.1	24
234	Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS Nano, 2022, 16, 4666-4683.	14.6	24

#	Article	IF	Citations
235	Skin Delivery of Hydrophilic Biomacromolecules Using Marine Sponge Spicules. Molecular Pharmaceutics, 2017, 14, 3188-3200.	4.6	23
236	Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials, 2022, 280, 121302.	11.4	23
237	Discovery of synergistic permeation enhancers for oral drug delivery. Journal of Controlled Release, 2008, 128, 128-133.	9.9	22
238	Schedule dependent synergy of gemcitabine and doxorubicin: Improvement of in vitro efficacy and lack of in vitroâ€in vivo correlation. Bioengineering and Translational Medicine, 2018, 3, 49-57.	7.1	22
239	Macrophageâ€Mediated Delivery of Hypoxiaâ€Activated Prodrug Nanoparticles. Advanced Therapeutics, 2020, 3, 1900162.	3.2	22
240	lonicâ€Liquidâ€Based Safe Adjuvants. Advanced Materials, 2020, 32, e2002990.	21.0	22
241	Theory of Spatial Patterns of Intracellular Organelles. Biophysical Journal, 2006, 90, L67-L69.	0.5	21
242	Multicomponent chemical enhancer formulations for transdermal drug delivery: More is not always better. Journal of Controlled Release, 2010, 144, 175-180.	9.9	21
243	Controlling Complex Nanoemulsion Morphology Using Asymmetric Cosurfactants for the Preparation of Polymer Nanocapsules. Langmuir, 2018, 34, 978-990.	3.5	20
244	Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin. Bioengineering and Translational Medicine, 2019, 4, e10129.	7.1	20
245	Mucoadhesive Ionic Liquid Gel Patches for Oral Delivery. ACS Biomaterials Science and Engineering, 2023, 9, 2838-2845.	5.2	20
246	Enhancement of Anticancer Efficacy and Tumor Penetration of Sorafenib by Ionic Liquids. Advanced Healthcare Materials, 2021, 10, e2001455.	7.6	20
247	Transcutaneous immunization using common chemicals. Journal of Controlled Release, 2009, 138, 134-140.	9.9	19
248	Hyaluronic a <scp>cid–doxorubicin</scp> nanoparticles for targeted treatment of colorectal cancer. Bioengineering and Translational Medicine, 2021, 6, e10166.	7.1	19
249	Endocytic pathway rapidly delivers internalized molecules to lysosomes: An analysis of vesicle trafficking, clustering and mass transfer. Journal of Controlled Release, 2012, 162, 76-83.	9.9	18
250	Synthesis of Oil-Laden Poly(ethylene glycol) Diacrylate Hydrogel Nanocapsules from Double Nanoemulsions. Langmuir, 2017, 33, 6116-6126.	3.5	18
251	Glycosylation facilitates transdermal transport of macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21283-21288.	7.1	16
252	Detachment of ligands from nanoparticle surface under flow and endothelial cell contact: Assessment using microfluidic devices. Bioengineering and Translational Medicine, 2018, 3, 148-155.	7.1	16

#	Article	IF	Citations
253	Stabilization and Topical Skin Delivery of Framework Nucleic Acids using Ionic Liquids. Advanced Therapeutics, 2020, 3, 2000041.	3.2	16
254	Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid and Interface Science, 2021, 52, 101408.	7.4	16
255	Topical treatment of periodontitis using an iongel. Biomaterials, 2021, 276, 121069.	11.4	16
256	On the origin of size-dependent tortuosity for permeation of hydrophilic solutes across the stratum corneum. Journal of Controlled Release, 2003, 86, 183-186.	9.9	15
257	Nanoparticle transport across model cellular membranes: when do solubility-diffusion models break down?. Journal Physics D: Applied Physics, 2018, 51, 294004.	2.8	15
258	Hyaluronic acid conjugates for topical treatment of skin cancer lesions. Science Advances, 2021, 7, .	10.3	15
259	Synthesis and Characterization of a Selfâ€Fluorescent Hyaluronic Acid–Based Gel for Dermal Applications. Advanced Healthcare Materials, 2015, 4, 2297-2305.	7.6	14
260	Multifunctional Synthetic Protein Nanoparticles via Reactive Electrojetting. Macromolecular Rapid Communications, 2020, 41, e2000425.	3.9	14
261	Programmable Delivery of Synergistic Cancer Drug Combinations Using Bicompartmental Nanoparticles. Advanced Healthcare Materials, 2020, 9, e2000564.	7.6	14
262	Gemcitabine and doxorubicin in immunostimulatory monophosphoryl lipid A liposomes for treating breast cancer. Bioengineering and Translational Medicine, 2021, 6, e10188.	7.1	14
263	A dual macrophage polarizer conjugate for synergistic melanoma therapy. Journal of Controlled Release, 2021, 335, 333-344.	9.9	14
264	Injectable hyaluronic acid hydrogels encapsulating drug nanocrystals for longâ€ŧerm treatment of inflammatory arthritis. Bioengineering and Translational Medicine, 2022, 7, e10245.	7.1	14
265	Dependence of skin permeability on contact area. Pharmaceutical Research, 2003, 20, 257-263.	3.5	13
266	A Deep Eutectic Solventâ€Based Approach to Intravenous Formulation. Advanced Healthcare Materials, 2021, 10, e2100585.	7.6	13
267	Red Blood Cell Anchoring Enables Targeted Transduction and Reâ€Administration of AAVâ€Mediated Gene Therapy. Advanced Science, 2022, 9, .	11.2	13
268	lonic Liquid-Enabled Topical Delivery of Immunomodulators. ACS Biomaterials Science and Engineering, 2021, 7, 2783-2790.	5.2	12
269	Overcoming biological barriers to improve solid tumor immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2276-2301.	5.8	11
270	Effect of bilayer distruption on transdermal transport of low-molecular weight hydrophobic solutes., 2001, 18, 1018-1023.		10

#	Article	IF	CITATIONS
271	Cholineâ€Geranate Deep Eutectic Solvent Improves Stability and Halfâ€Life of Glucagonâ€Like Peptideâ€1. Advanced Therapeutics, 2021, 4, .	3.2	10
272	Screening soft materials for their effect on skin barrier function by high throughput experimentation. Journal of Materials Chemistry, 2005, 15, 3061.	6.7	9
273	One-step acquisition of functional biomolecules from tissues. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14627-14632.	7.1	9
274	Surfaceâ€Functionalized Carrierâ€Free Drug Nanorods for Leukemia. Advanced Therapeutics, 2018, 1, 1800010.	3.2	9
275	Formulationâ€based approaches for dermal delivery of vaccines and therapeutic nucleic acids: Recent advances and future perspectives. Bioengineering and Translational Medicine, 2021, 6, e10215.	7.1	9
276	Correlations Between Skin Barrier Integrity and Delivery of Hydrophilic Molecules in the Presence of Penetration Enhancers. Pharmaceutical Research, 2020, 37, 100.	3.5	9
277	lonic Liquidâ€Mediated Transdermal Delivery of Thrombosisâ€Detecting Nanosensors. Advanced Healthcare Materials, 2022, 11, e2102685.	7.6	9
278	Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. Journal of Nanobiotechnology, 2022, 20, .	9.1	9
279	A chemical engineering perspective of nanoparticleâ€based targeted drug delivery: A unit process approach. AICHE Journal, 2016, 62, 966-974.	3.6	8
280	Hyaluronic Acid Conjugates of Vorinostat and Bexarotene for Treatment of Cutaneous Malignancies. Advanced Therapeutics, 2020, 3, 2000116.	3.2	8
281	Enhancement of elastin expression by transdermal administration of sialidase isozyme Neu2. Scientific Reports, 2021, 11, 3302.	3.3	8
282	A deep eutectic-based, self-emulsifying subcutaneous depot system for apomorphine therapy in Parkinsonâ \in ^M s disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
283	Treating Tumors at Low Drug Doses Using an Aptamer–Peptide Synergistic Drug Conjugate. Angewandte Chemie, 2019, 131, 1451-1455.	2.0	7
284	Bioinspired particle engineering for non-invasive inhaled drug delivery to the lungs. Materials Science and Engineering C, 2021, 128, 112324.	7.3	7
285	Modeling of pattern regulation in melanophores. Journal of Theoretical Biology, 2007, 244, 141-153.	1.7	6
286	Sonophoresis: Ultrasound-Mediated Transdermal Drug Delivery. , 2017, , 3-14.		6
287	Noninvasive Assessment of Epidermal Genomic Markers of UV Exposure in Skin. Journal of Investigative Dermatology, 2021, 141, 124-131.e2.	0.7	6
288	Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy. Advanced Therapeutics, 2022, 5, .	3.2	6

#	Article	IF	CITATIONS
289	Hyaluronic Acid Nanoparticles for Immunogenic Chemotherapy of Leukemia and T-Cell Lymphoma. Pharmaceutics, 2022, 14, 466.	4.5	6
290	Rapid Sampling of Molecules via Skin for Diagnostic and Forensic Applications. Pharmaceutical Research, 2010, 27, 1255-1263.	3.5	5
291	A reagent to facilitate protein recovery from cells and tissues. Drug Delivery and Translational Research, 2012, 2, 297-304.	5.8	5
292	Mechanical Disruption of Skin Barrier for Vaccine Delivery. Drug Delivery System, 2012, 27, 202-212.	0.0	5
293	Optimized lysis buffer reagents for solubilization and preservation of proteins from cells and tissues. Drug Delivery and Translational Research, 2013, 3, 428-436.	5.8	5
294	Enhanced epidermal localization of topically applied steroids using SPACEâ,, peptide. Drug Delivery and Translational Research, 2015, 5, 523-530.	5.8	5
295	Introduction to special issue on "Nanoparticles in Medicine: Targeting, Optimization and Clinical Applications― Bioengineering and Translational Medicine, 2016, 1, 8-9.	7.1	5
296	Nanoparticle Properties Influence Transendothelial Migration of Monocytes. Langmuir, 2022, 38, 5603-5616.	3.5	5
297	Mechanistic Analysis of Cellular Internalization of a Cell- and Skin-Penetrating Peptide. Regenerative Engineering and Translational Medicine, 2016, 2, 23-36.	2.9	4
298	The Search for Antifungal Prophylaxis After Artificial Corneal Surgery—An In Vitro Study. Cornea, 2020, 39, 1547-1555.	1.7	4
299	Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium) Tj ETQq1 1 0.784314 rgBT /Ove Batrachochytrium dendrobatidis. PLoS ONE, 2020, 15, e0231811.	erlock 10 T ⁻ 2.5	f 50 347 Td (4
300	Optimized 5-Fluorouridine Prodrug for Co-Loading with Doxorubicin in Clinically Relevant Liposomes. Pharmaceutics, 2021, 13, 107.	4.5	4
301	Formulating propranolol as an amorphous melt affords reduced skin irritation potential for transdermal drug delivery. Technology, 2015, 03, 214-238.	1.4	3
302	Angle-dependent light scattering by highly uniform colloidal rod-shaped microparticles: Experiment and simulation. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1889-1895.	2.1	3
303	UFOs, Worms, and Surfboards: What Shapes Teach Us About Cell–Material Interactions. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 301-323.	0.5	3
304	Tang H, Mitragotri S, Blankschtein D, Langer R. 2001. Theoretical description of transdermal transport of hydrophilic permeants: Application to low-frequency sonophoresis. J Pharm Sci 90:545–568 Journal of Pharmaceutical Sciences, 2009, 98, 3878.	3.3	2
305	Novel Topical Microbicides Through Combinatorial Strategies. Pharmaceutical Research, 2010, 27, 1264-1272.	3.5	2
306	Sampling of disease biomarkers from skin for theranostic applications. Drug Delivery and Translational Research, 2012, 2, 87-94.	5.8	2

#	Article	IF	CITATIONS
307	Progressive transition from resonant to diffuse reflection in anisotropic colloidal films. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 611-617.	2.1	2
308	Amphiphilic Polyacrylamide Excipients Lead to a Record-Breaking Fast-Acting Insulin. Trends in Pharmacological Sciences, 2020, 41, 681-684.	8.7	2
309	<scp>BioTM</scp> Buzz (Volume 5, Issue 3): The Future is Bright. Bioengineering and Translational Medicine, 2020, 5, e10185.	7.1	2
310	Introduction to Editorial Board Members: Prof Nicholas A. Peppas. Bioengineering and Translational Medicine, 2016, 1, 5-7.	7.1	1
311	Engineering clinical translation-Introduction to Special Issue Dedicated to 2017 Bioengineering and Translational Medicine Conference. Bioengineering and Translational Medicine, 2018, 3, 185-185.	7.1	1
312	<scp><i>Bioengineering & Dioengineering & Dioengineering and Translational Medicine, 2020, 5, e10178.</i></scp>	7.1	1
313	Title is missing!. Pharmaceutical Research, 2002, 19, 355-355.	3.5	O
314	Introduction to Special Issue: 2016 Translational Medicine and Bioengineering Conference. Bioengineering and Translational Medicine, 2017, 2, 137-138.	7.1	0
315	Introduction to Editorial Board Members: Dr. Raghunath Mashelkar. Bioengineering and Translational Medicine, 2017, 2, 236-237.	7.1	O
316	Reply to Peiretti et al.: Effect of CAGE on fat uptake and food intake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8249-8249.	7.1	O