Tomasz Jungst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3572851/publications.pdf Version: 2024-02-01

TOMASZ LUNCST

#	Article	IF	CITATIONS
1	Hydrophilic (AB) n Segmented Copolymers for Melt Extrusionâ€Based Additive Manufacturing. Macromolecular Chemistry and Physics, 2021, 222, 2000265.	1.1	1
2	Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth. Macromolecular Bioscience, 2021, 21, e2000439.	2.1	10
3	Melt Electrowriting of Isomalt for Highâ€Resolution Templating of Embedded Microchannels. Advanced Materials Technologies, 2021, 6, 2100221.	3.0	9
4	Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications. Advanced Materials, 2021, 33, e2100091.	11.1	97
5	Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants. Materials, 2021, 14, 5197.	1.3	12
6	Controlling Topography and Crystallinity of Melt Electrowritten Poly(É›-Caprolactone) Fibers. 3D Printing and Additive Manufacturing, 2021, 8, 315-321.	1.4	8
7	Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication, 2020, 12, 015009.	3.7	43
8	Hyaluronic Acidâ€Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix. Advanced Healthcare Materials, 2020, 9, e2000737.	3.9	81
9	Sterilization Methods and Their Influence on Physicochemical Properties and Bioprinting of Alginate as a Bioink Component. ACS Omega, 2020, 5, 6481-6486.	1.6	27
10	From Shape to Function: The Next Step in Bioprinting. Advanced Materials, 2020, 32, e1906423.	11.1	298
11	Stepwise Control of Crosslinking in a Oneâ€Pot System for Bioprinting of Lowâ€Density Bioinks. Advanced Healthcare Materials, 2020, 9, e1901544.	3.9	37
12	Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts. Advanced Functional Materials, 2019, 29, 1905987.	7.8	82
13	A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 2019, 11, 013001.	3.7	480
14	Biofabrication: Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cellâ€Accumulation Technology (Small 2/2018). Small, 2018, 14, 1870010.	5.2	0
15	Development of Endothelial Cell Networks in 3D Tissues by Combination of Melt Electrospinning Writing with Cellâ€Accumulation Technology. Small, 2018, 14, 1701521.	5.2	38
16	Evaluation of Hydrogels Based on Oxidized Hyaluronic Acid for Bioprinting. Gels, 2018, 4, 82.	2.1	34
17	Design and fabrication of melt electrowritten tubes using intuitive software. Materials and Design, 2018, 155, 46-58.	3.3	56
18	Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication. Annals of Biomedical Engineering, 2017, 45, 273-285.	1.3	86

Tomasz Jungst

#	Article	IF	CITATIONS
19	Thiolâ€ene Crossâ€Linkable Hydrogels as Bioinks for Biofabrication. Macromolecular Symposia, 2017, 372, 102-107.	0.4	13
20	Kontrolle der Freisetzungskinetik von Nanopartikeln aus 3Dâ€gedruckten Hydrogelgerüsten. Angewandte Chemie, 2017, 129, 4694-4699.	1.6	1
21	Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 4623-4628.	7.2	53
22	Thiol–Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies. Advanced Materials, 2017, 29, 1703404.	11.1	248
23	Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, 2017, 9, 044107.	3.7	620
24	A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules, 2017, 18, 2161-2171.	2.6	90
25	Zellgewebe aus dem Drucker. Nachrichten Aus Der Chemie, 2016, 64, 13-16.	0.0	2
26	Fibre pulsing during melt electrospinning writing. BioNanoMaterials, 2016, 17, .	1.4	109
27	Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chemical Reviews, 2016, 116, 1496-1539.	23.0	580
28	Melt electrospinning onto cylinders: effects of rotational velocity and collector diameter on morphology of tubular structures. Polymer International, 2015, 64, 1086-1095.	1.6	86
29	Dreidimensional gedruckte, zellbeladene Konstrukte aus Spinnenseide. Angewandte Chemie, 2015, 127, 2858-2862.	1.6	5
30	Biofabrication of Cell‣oaded 3D Spider Silk Constructs. Angewandte Chemie - International Edition, 2015, 54, 2816-2820.	7.2	207
31	Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks. Pure and Applied Chemistry, 2015, 87, 737-749.	0.9	53
32	Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7, 035002.	3.7	296
33	25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 2013, 25, 5011-5028.	11.1	1,522
34	Melt Electrowriting of a Photoâ€Crosslinkable Poly(<i>ε</i> â€Caprolactone)â€Based Material into Tubular Constructs with Predefined Architecture and Tunable Mechanical Properties. Macromolecular Materials and Engineering, 0, , 2200097.	1.7	6