Daniel P Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3572258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Does climate change influence the current and future projected distribution of an endangered species? The case of the southernmost bumblebee in the world. Journal of Insect Conservation, 2022, 26, 257-269.	0.8	7
2	Synergistic effects of climate and landscape change on the conservation of Amazonian lizards. PeerJ, 2022, 10, e13028.	0.9	2
3	Natural habitat cover and fragmentation per se influence orchid-bee species richness in agricultural landscapes in the Brazilian Cerrado. Apidologie, 2022, 53, 1.	0.9	6
4	Current and future distributions of a native Andean bumble bee. Journal of Insect Conservation, 2022, 26, 559-569.	0.8	6
5	How Will the Distributions of Native and Invasive Species Be Affected by Climate Change? Insights from Giant South American Land Snails. Diversity, 2022, 14, 467.	0.7	4
6	Local abundance of neotropical orchid bees in Amazon forests not related to largeâ€scale climate suitability. Insect Conservation and Diversity, 2022, 15, 693-703.	1.4	1
7	Exotic species are perceived more than native ones in a megadiverse country as brazil. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20191462.	0.3	7
8	Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. Journal of Insect Conservation, 2021, 25, 229-241.	0.8	5
9	Invasive plants in Brazil: climate change effects and detection of suitable areas within conservation units. Biological Invasions, 2021, 23, 1577-1594.	1.2	14
10	Biological invasions in brazilian environmental science courses: do we need new approaches?. Neotropical Biology and Conservation, 2021, 16, 221-238.	0.4	4
11	Systematics of the oil bee genus <i>Lanthanomelissa</i> (Apidae: Tapinotaspidini) and its implications for the biogeography of South American grasslands. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 1013-1027.	0.6	4
12	Orchid bees (Apidae, Euglossini) from Oil Palm Plantations in Eastern Amazon Have Larger but Not Asymmetrical Wings. Neotropical Entomology, 2021, 50, 388-397.	0.5	4
13	Quaternary climatic fluctuations influence the demographic history of two species of sky-island endemic amphibians in the Neotropics. Molecular Phylogenetics and Evolution, 2021, 160, 107113.	1.2	15
14	The specialist of a specialist: the natural history of the predispersal seed predator weevil <i>Hemicolpus abdominalis</i> (Coleoptera: Curculionidae). Ecological Entomology, 2021, 46, 1006-1018.	1.1	4
15	Global warming drives range shifts in spiny-tailed lizards (Squamata: Agamidae: Uromastyx) in the African and Arabian deserts. Journal of Arid Environments, 2021, 191, 104522.	1.2	2
16	The ghost vampire: spatio-temporal distribution and conservation status of the largest bat in the Americas. Biodiversity and Conservation, 2021, 30, 4359.	1.2	0
17	Colonizing the east and the west: distribution and niche properties of a dwarf Asian honey bee invading Africa, the Middle East, the Malay Peninsula, and Taiwan. Apidologie, 2020, 51, 75-87.	0.9	13
18	When the company does not matter: Highâ€quality ant seedâ€disperser does not drive the spatial distribution of largeâ€seeded myrmecochorous plants. Austral Ecology, 2020, 45, 195-205.	0.7	1

DANIEL P SILVA

#	Article	IF	CITATIONS
19	Reconciling coffee productivity and natural vegetation conservation in an agroecosystem landscape in Brazil. Journal for Nature Conservation, 2020, 57, 125902.	0.8	14
20	The role of ecological niche evolution on diversification patterns of birds distinctly distributed between the Amazonia and Atlantic rainforests. PLoS ONE, 2020, 15, e0238729.	1.1	2
21	An updated documented inventory and new records of bird species for the Brazilian state of Maranhão. Ornithology Research, 2020, 28, 77-85.	0.6	3
22	Predicting the distribution range of a recently described, habitat specialist bee. Journal of Insect Conservation, 2020, 24, 671-680.	0.8	3
23	Effects of different variable sets on the potential distribution of fish species in the Amazon Basin. Ecology of Freshwater Fish, 2020, 29, 764-778.	0.7	3
24	Model approaches to estimate spatial distribution of bee species richness and soybean production in the Brazilian Cerrado during 2000 to 2015. Science of the Total Environment, 2020, 737, 139674.	3.9	5
25	Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1238-1250.	0.9	35
26	Using distribution models to estimate blooms of phytosanitary cyanobacteria in Brazil. Biota Neotropica, 2020, 20, .	0.2	5
27	Potential Effects of Future Climate Changes on Brazilian Cool-Adapted Stoneflies (Insecta:) Tj ETQq1 1 0.784314	rgBT /Ove	rlgck 10 Tr 5
28	Current and future ranges of an elusive North American insect using species distribution models. Journal of Insect Conservation, 2019, 23, 175-186.	0.8	8
29	Modelling Highly Biodiverse Areas in Brazil. Scientific Reports, 2019, 9, 6355.	1.6	30
30	Inferring host-cleptoparasite complexes of South American Centridine bees (Hymenoptera: Apidae) using macroecological perspectives. Organisms Diversity and Evolution, 2019, 19, 179-190.	0.7	3
31	Range expansion of an already widespread bee under climate change. Global Ecology and Conservation, 2019, 17, e00584.	1.0	20
32	Bees (Hymenoptera, Apoidea) in an Ecotonal Cerrado-Amazon Region in Brazil. Sociobiology, 2019, 66, 457.	0.2	7
33	Reply to Biodiversity conservation gaps in Brazil: A role for systematic conservation planning. Perspectives in Ecology and Conservation, 2018, 16, 166-167.	1.0	0
34	No deaths in the desert: predicted responses of an aridâ€adapted bee and its two nesting trees suggest resilience in the face of warming climates. Insect Conservation and Diversity, 2018, 11, 449-463.	1.4	12
35	Effects of habitat type change on taxonomic and functional composition of orchid bees (Apidae:) Tj ETQq1 1 0.7	84314 rgB 0.8	T /Qverlock
36	Potential pollination maintenance by an exotic allodapine bee under climate change scenarios in the Indoâ€Pacific region. Journal of Applied Entomology, 2017, 141, 122-132.	0.8	9

DANIEL P SILVA

#	Article	IF	CITATIONS
37	Contrasting Patterns in Solitary and Eusocial Bees While Responding to Landscape Features in the Brazilian Cerrado: a Multiscaled Perspective. Neotropical Entomology, 2017, 46, 264-274.	0.5	10
38	Forest reserves and riparian corridors help maintain orchid bee (Hymenoptera: Euglossini) communities in oil palm plantations in Brazil. Apidologie, 2017, 48, 575-587.	0.9	19
39	Ants as indicators of soil quality in an on-going recovery of riparian forests. Forest Ecology and Management, 2017, 404, 338-343.	1.4	14
40	New records of an invasive bumble bee in northern Chile: expansion of its range or new introduction events?. Journal of Insect Conservation, 2017, 21, 657-666.	0.8	19
41	Nesting biology and potential distribution of an oil-collecting Centridine Bee from South America. Apidologie, 2017, 48, 181-193.	0.9	8
42	Delimiting priority areas for the conservation of endemic and threatened Neotropical birds using a niche-based gap analysis. PLoS ONE, 2017, 12, e0171838.	1.1	36
43	Biodiversity conservation gaps in the Brazilian protected areas. Scientific Reports, 2017, 7, 9141.	1.6	180
44	Distribuição de quelônios no Cerrado brasileiro. Multi-Science Journal, 2017, 1, 32.	0.1	2
45	Os reservatórios de pequenas centrais hidrelétricas alteram a comunidade de morcegos (Mammalia:) Tj ETQq1	1.0.7843 0.1	14 rgBT /Ov
46	Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biological Invasions, 2016, 18, 3137-3148.	1.2	48
47	Assessing the distribution and conservation status of a long-horned beetle with species distribution models. Journal of Insect Conservation, 2016, 20, 611-620.	0.8	20
48	Effects of climate change and habitat loss on a forestâ€dependent bee species in a tropical fragmented landscape. Insect Conservation and Diversity, 2016, 9, 149-160.	1.4	27
49	New evidences supporting trophobiosis between populations of Edessa rufomarginata (Heteroptera:) Tj ETQq1 1 (2016, 60, 166-170.	0.784314 0.1	rgBT /Overlo 4
50	The strong influence of collection bias on biodiversity knowledge shortfalls of <scp>B</scp> razilian terrestrial biodiversity. Diversity and Distributions, 2016, 22, 1232-1244.	1.9	226
51	Distributional modeling of Mantophasmatodea (Insecta: Notoptera): a preliminary application and the need for future sampling. Organisms Diversity and Evolution, 2016, 16, 259-268.	0.7	5
52	Habitats climaticamente adequados para uma espécie de serpente potencialmente ameaçada em cenários atuais e futuros. Neotropical Biology and Conservation, 2016, 11, .	0.4	0
53	Ring out the bells, we are being invaded! Niche conservatism in exotic populations of the Yellow Bells, Tecoma stans (Bignoniaceae). Natureza A Conservacao, 2015, 13, 24-29.	2.5	19
54	The Size But not the Symmetry of the Wings of Eulaema nigrita Lepeletier (Apidae: Euglossini) is Affected by Human-Disturbed Landscapes in the Brazilian Cerrado Savanna. Neotropical Entomology, 2015, 44, 439-447.	0.5	15

DANIEL P SILVA

#	Article	IF	CITATIONS
55	Range increase of a Neotropical orchid bee under future scenarios of climate change. Journal of Insect Conservation, 2015, 19, 901-910.	0.8	25
56	Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 2015, 19, 33-43.	0.8	48
57	Pleistocene Niche Stability and Lineage Diversification in the Subtropical Spider Araneus omnicolor (Araneidae). PLoS ONE, 2015, 10, e0121543.	1.1	38
58	Adding Biotic Interactions into Paleodistribution Models: A Host-Cleptoparasite Complex of Neotropical Orchid Bees. PLoS ONE, 2015, 10, e0129890.	1.1	11
59	Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecological Modelling, 2014, 273, 200-209.	1.2	68
60	No Evidence of Habitat Loss Affecting the Orchid Bees Eulaema nigrita Lepeletier and Eufriesea auriceps Friese (Apidae: Euglossini) in the Brazilian Cerrado Savanna. Neotropical Entomology, 2014, 43, 509-518.	0.5	21
61	Using Ecological Niche Models and Niche Analyses to Understand Speciation Patterns: The Case of Sister Neotropical Orchid Bees. PLoS ONE, 2014, 9, e113246.	1.1	42
62	Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie, 2013, 44, 673-683.	0.9	41
63	Current and historical climate signatures to deconstructed tree species richness pattern in South America. Acta Scientiarum - Biological Sciences, 2013, 35, 219-231.	0.3	3
64	Field Biology of Edessa rufomarginata (Hemiptera: Pentatomidae): Phenology, Behavior, and Patterns of Host Plant Use. Environmental Entomology, 2010, 39, 1903-1910.	0.7	19
65	Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: A case study. Ecological Indicators, 2010, 10, 744-752.	2.6	105
66	Where could Centris nigrescens (Hymenoptera: Apidae) go under climate change?. Journal of Apicultural Research, 0, , 1-9.	0.7	0
67	Efficiency in pollen foraging by honey bees: Time, motion and pollen depletion on flowers of <i>Sisyrinchium palmifolium</i> Linnaeus (Asparagales: Iridaceae). Journal of Pollination Ecology, 0, 11, 27-32.	0.5	12
68	Unusual pollinator attractants increase the fructification rate on West Indian Cherry Trees. Journal of Applied Entomology, 0, , .	0.8	0
69	Two dioecious Simarouba species with a specialized pollination system and low reproductive efficacy in Central Brazil. Rodriguesia, 0, 73, .	0.9	0
70	Distribution of the greater naked-tailed armadillo <i>Cabassous tatouay</i> (Desmarest, 1804) in South America, with new records and species distribution modeling. Studies on Neotropical Fauna and Environment, 0, , 1-9.	0.5	1