Naoyuki Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3572242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sciences, 2021, 11, 1095.	2.3	8
2	Perspectives on Rehabilitation Using Non-invasive Brain Stimulation Based on Second-Person Neuroscience of Teaching-Learning Interactions. Frontiers in Psychology, 2021, 12, 789637.	2.1	2
3	Activity of Prefrontal Cortex in Teachers and Students during Teaching of an Insight Problem. Mind, Brain, and Education, 2019, 13, 167-175.	1.9	14
4	Prefrontal cortex activation during a dual task in patients with stroke. Gait and Posture, 2018, 59, 193-198.	1.4	38
5	Neural Plasticity on Body Representations: Advancing Translational Rehabilitation. Neural Plasticity, 2016, 2016, 1-2.	2.2	6
6	Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking. BMC Neuroscience, 2016, 17, 9.	1.9	39
7	Neurophysiological measurements of affected and unaffected motor cortex from a cross-sectional, multi-center individual stroke patient data analysis study. Neurophysiologie Clinique, 2016, 46, 53-61.	2.2	13
8	Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching–learning Task. Frontiers in Psychology, 2016, 7, 2052.	2.1	41
9	Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity. Frontiers in Human Neuroscience, 2015, 9, 349.	2.0	52
10	Rehabilitation with Poststroke Motor Recovery: A Review with a Focus on Neural Plasticity. Stroke Research and Treatment, 2013, 2013, 1-13.	0.8	197
11	Low-Frequency Repetitive TMS Plus Anodal Transcranial DCS Prevents Transient Decline in Bimanual Movement Induced by Contralesional Inhibitory rTMS After Stroke. Neurorehabilitation and Neural Repair, 2012, 26, 988-998.	2.9	53
12	Maladaptive Plasticity for Motor Recovery after Stroke: Mechanisms and Approaches. Neural Plasticity, 2012, 2012, 1-9.	2.2	167
13	Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views. Stroke Research and Treatment, 2012, 2012, 1-10.	0.8	67
14	Motor Control and Neural Plasticity through Interhemispheric Interactions. Neural Plasticity, 2012, 2012, 1-13.	2.2	125
15	Low Frequency Repetitive Transcranial Magnetic Stimulation over Unaffected Motor Cortex in Stroke Patients Influences Bilateral Movement and Coupling between Motor Related Cortices. The Japanese Journal of Rehabilitation Medicine, 2011, 48, 341-351.	0.0	Ο
16	Correlation of motor function with transcallosal and intracortical inhibition after stroke. Journal of Rehabilitation Medicine, 2010, 42, 962-966.	1.1	46
17	Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. Journal of Rehabilitation Medicine, 2009, 41, 1049-1054.	1.1	119
18	Repetitive Transcranial Magnetic Stimulation of the Unaffected Hemisphere in a Patient Who Was Forced to Use the Affected Hand. American Journal of Physical Medicine and Rehabilitation, 2008, 87, 74-77.	1.4	13

Ναογμκι Τακεμομι

#	Article	IF	CITATIONS
19	Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranical magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. Journal of Rehabilitation Medicine, 2008, 40, 298-303.	1.1	193
20	Recent Advances in Rehabilitation : Transcranial Magnetic Stimulation for Stroke Patients. The Japanese Journal of Rehabilitation Medicine, 2008, 45, 598-604.	0.0	0
21	Disinhibition of the Premotor Cortex Contributes to a Maladaptive Change in the Affected Hand After Stroke. Stroke, 2007, 38, 1551-1556.	2.0	36
22	Measurement of transcallosal inhibition in traumatic brain injury by transcranial magnetic stimulation. Brain Injury, 2006, 20, 991-996.	1.2	19
23	Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke. Stroke, 2005, 36, 2681-2686.	2.0	546
24	Phenol block for cervical dystonia: effects and side effects. Archives of Physical Medicine and Rehabilitation, 2004, 85, 1117-1120.	0.9	12
25	Treatment of Dystonia with Neuropathic Pain: A Report of Two Cases The Japanese Journal of Rehabilitation Medicine, 2001, 38, 666-670.	0.1	0