List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3572009/publications.pdf Version: 2024-02-01

YING WILLIN

#	Article	IF	CITATIONS
1	Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Science Advances, 2020, 6, eabb2695.	10.3	271
2	Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays. ACS Sensors, 2016, 1, 1336-1343.	7.8	255
3	Rational design of a structural and functional nitric oxide reductase. Nature, 2009, 462, 1079-1082.	27.8	218
4	Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 2019, 9, 31563-31571.	3.6	151
5	Visible-light-induced decarboxylative acylation of quinoxalin-2(1 <i>H</i>)-ones with α-oxo carboxylic acids under metal-, strong oxidant- and external photocatalyst-free conditions. Green Chemistry, 2020, 22, 1720-1725.	9.0	145
6	Rational design of metalloenzymes: From single to multiple active sites. Coordination Chemistry Reviews, 2017, 336, 1-27.	18.8	122
7	The concept of dual roles design in clean organic preparation. Chinese Chemical Letters, 2019, 30, 2132-2138.	9.0	114
8	Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8581-8586.	7.1	106
9	Selective oxidation of (hetero)sulfides with molecular oxygen under clean conditions. Green Chemistry, 2020, 22, 433-438.	9.0	102
10	Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. Chinese Chemical Letters, 2021, 32, 1907-1910.	9.0	100
11	Aryl acyl peroxides for visible-light induced decarboxylative arylation of quinoxalin-2(1 <i>H</i>)-ones under additive-, metal catalyst-, and external photosensitizer-free and ambient conditions. Green Chemistry, 2021, 23, 374-378.	9.0	99
12	Synergistic cooperative effect of CF ₃ SO ₂ Na and bis(2-butoxyethyl)ether towards selective oxygenation of sulfides with molecular oxygen under visible-light irradiation. Green Chemistry, 2021, 23, 496-500.	9.0	86
13	Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. Chinese Journal of Catalysis, 2021, 42, 1445-1450.	14.0	86
14	TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water. Chinese Chemical Letters, 2019, 30, 2287-2290.	9.0	78
15	Nitriles as radical acceptors in radical cascade reactions. Organic Chemistry Frontiers, 2021, 8, 445-465.	4.5	71
16	Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. Chinese Chemical Letters, 2021, 32, 475-479.	9.0	66
17	Visible-Light-Initiated Cross-Dehydrogenative Coupling of Quinoxalin-2(1 <i>H</i>)-ones and Simple Amides with Air as an Oxidant. ACS Sustainable Chemistry and Engineering, 2019, 7, 19993-19999.	6.7	64
18	Tyrosine-67 in cytochrome c is a possible apoptotic trigger controlled by hydrogen bonds via a conformational transition. Chemical Communications, 2009, , 4512.	4.1	57

#	Article	IF	CITATIONS
19	Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran. Chinese Chemical Letters, 2019, 30, 2259-2262.	9.0	56
20	Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity. Journal of the American Chemical Society, 2010, 132, 9970-9972.	13.7	55
21	Structure and function of heme proteins in non-native states: A mini-review. Journal of Inorganic Biochemistry, 2013, 129, 162-171.	3.5	54
22	Mimicking a Natural Enzyme System: Cytochrome <i>c</i> Oxidase-Like Activity of Cu ₂ 0 Nanoparticles by Receiving Electrons from Cytochrome <i>c</i> . Inorganic Chemistry, 2017, 56, 9400-9403.	4.0	52
23	Structure and function of heme proteins regulated by diverse post-translational modifications. Archives of Biochemistry and Biophysics, 2018, 641, 1-30.	3.0	52
24	Metalâ€Free C3 Hydroxylation of Quinoxalinâ€2(1 H)â€ones in Water. Advanced Synthesis and Catalysis, 2019, 361, 5721-5726.	4.3	50
25	Functional tuning and expanding of myoglobin by rational protein design. Science China Chemistry, 2014, 57, 346-355.	8.2	46
26	Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions. Chinese Chemical Letters, 2019, 30, 2304-2308.	9.0	43
27	A Rationally Designed Myoglobin Exhibits a Catalytic Dehalogenation Efficiency More than 1000-Fold That of a Native Dehaloperoxidase. ACS Catalysis, 2018, 8, 9619-9624.	11.2	42
28	Cooperative Capture of Uranyl Ions by a Carbonylâ€Bearing Hierarchicalâ€Porous Cu–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 18808-18812.	13.8	42
29	A Novel Tyrosine–Heme CO Covalent Linkage in F43Y Myoglobin: A New Postâ€ŧranslational Modification of Heme Proteins. ChemBioChem, 2015, 16, 47-50.	2.6	37
30	Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries. Nanoscale Research Letters, 2017, 12, 13.	5.7	37
31	Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Organic Letters, 2020, 22, 2206-2209.	4.6	37
32	<i>In vitro</i> measurement of superoxide dismutase-like nanozyme activity: a comparative study. Analyst, The, 2021, 146, 1872-1879.	3.5	37
33	Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Journal of Biological Inorganic Chemistry, 2018, 23, 7-25.	2.6	36
34	Converting Cytochrome c into a Peroxidase-Like Metalloenzyme by Molecular Design. ChemBioChem, 2007, 8, 607-609.	2.6	34
35	Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton Transactions, 2017, 46, 11230-11238.	3.3	34
36	Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coordination Chemistry Reviews, 2021, 434, 213774.	18.8	33

#	Article	IF	CITATIONS
37	Visible Light-Induced Aldehyde Reductive Minisci Reaction towards N-Heterocycles. Chinese Journal of Organic Chemistry, 2020, 40, 541.	1.3	33
38	Rational Heme Protein Design: All Roads Lead to Rome. Chemistry - an Asian Journal, 2013, 8, 2534-2544.	3.3	31
39	Rational Design of Heterodimeric Protein using Domain Swapping for Myoglobin. Angewandte Chemie - International Edition, 2015, 54, 511-515.	13.8	31
40	Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnology and Applied Biochemistry, 2020, 67, 484-494.	3.1	31
41	The Third Generation of Artificial Dye-Decolorizing Peroxidase Rationally Designed in Myoglobin. ACS Catalysis, 2019, 9, 7888-7893.	11.2	29
42	Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Molecules, 2019, 24, 2743.	3.8	29
43	Uranyl Binding to Proteins and Structural-Functional Impacts. Biomolecules, 2020, 10, 457.	4.0	29
44	A Catalytic Binding Site Together with a Distal Tyr in Myoglobin Affords Catalytic Efficiencies Similar to Natural Peroxidases. ACS Catalysis, 2020, 10, 891-896.	11.2	28
45	Spectroscopic study on the reactions of bis-salophen with uranyl and then with fructose 1,6-bisphosphate and the analytical application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 110-116.	3.9	27
46	The broad diversity of heme-protein cross-links: An overview. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 844-859.	2.3	27
47	Regulating the Coordination State of a Heme Protein by a Designed Distal Hydrogenâ€Bonding Network. ChemistryOpen, 2015, 4, 97-101.	1.9	27
48	Microwave-assisted 6Ï€-electrocyclization in water. Chinese Chemical Letters, 2020, 31, 2999-3000.	9.0	26
49	Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center. Nitric Oxide - Biology and Chemistry, 2016, 57, 21-29.	2.7	25
50	A Chiral Ligand Assembly That Confers Oneâ€Electron O ₂ Reduction Activity for a Cu ²⁺ â€6elective Metallohydrogel. Angewandte Chemie - International Edition, 2018, 57, 3504-3508.	13.8	25
51	Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorganic Chemistry, 2021, 60, 2839-2845.	4.0	24
52	A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 130-137.	3.9	23
53	How a novel tyrosine–heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin. Dalton Transactions, 2015, 44, 18815-18822.	3.3	23
54	An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity. Archives of Biochemistry and Biophysics, 2016, 600, 47-55.	3.0	23

#	Article	IF	CITATIONS
55	Converting Cytochrome b5 into Cytochrome c-Like Protein. ChemBioChem, 2005, 6, 1356-1359.	2.6	22
56	Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line. Radiation and Environmental Biophysics, 2015, 54, 207-216.	1.4	22
57	Green and efficient biosynthesis of indigo from indole by engineered myoglobins. RSC Advances, 2018, 8, 33325-33330.	3.6	22
58	1,2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions. Chinese Chemical Letters, 2020, 31, 1868-1872.	9.0	22
59	Structural insights into a lowâ€spin myoglobin variant with bisâ€histidine coordination from molecular modeling. Proteins: Structure, Function and Bioinformatics, 2011, 79, 679-684.	2.6	20
60	Heme-containing enzymes and inhibitors for tryptophan metabolism. Metallomics, 2017, 9, 1230-1240.	2.4	20
61	Rational design of a nitrite reductase based on myoglobin: a molecular modeling and dynamics simulation study. Journal of Molecular Modeling, 2012, 18, 4409-4415.	1.8	19
62	Regulation of both the structure and function by a <i>de novo</i> designed disulfide bond: a case study of heme proteins in myoglobin. Chemical Communications, 2018, 54, 4356-4359.	4.1	19
63	Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes. Bioelectrochemistry, 2018, 121, 115-124.	4.6	19
64	WO ₃ /Ag ₂ CO ₃ Mixed Photocatalyst with Enhanced Photocatalytic Activity for Organic Dye Degradation. ACS Omega, 2021, 6, 26439-26453.	3.5	19
65	Molecular iodine-catalyzed multicomponent synthesis of α-cyanopyrrolines with ambient air as the oxidant under neat conditions. Organic Chemistry Frontiers, 2020, 7, 4026-4030.	4.5	18
66	Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center. Journal of Inorganic Biochemistry, 2016, 156, 113-121.	3.5	17
67	Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: an artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chemical Communications, 2019, 55, 6610-6613.	4.1	17
68	Rational Design of an Artificial Nuclease by Engineering a Hetero-Dinuclear Center of Mg-Heme in Myoglobin. ACS Catalysis, 2020, 10, 14359-14365.	11.2	17
69	Interactions of uranyl ion with cytochrome b 5 and its His39Ser variant as revealed by molecular simulation in combination with experimental methods. Journal of Molecular Modeling, 2012, 18, 1009-1013.	1.8	15
70	Structural and nitrite reductase activity comparisons of myoglobins with one to three distal histidines. RSC Advances, 2013, 3, 9337.	3.6	15
71	Density functional theory investigation of nonsymmetrically substituted uranyl–salophen complexes. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 407-417.	1.5	15
72	Design and Engineering of an Efficient Peroxidase Using Myoglobin for Dye Decolorization and Lignin Bioconversion. International Journal of Molecular Sciences, 2022, 23, 413.	4.1	14

#	Article	IF	CITATIONS
73	Photo-induced DNA cleavage by zinc-substituted myoglobin with a redesigned active center. Inorganic Chemistry Frontiers, 2017, 4, 2033-2036.	6.0	13
74	Enhancement of protein stability by an additional disulfide bond designed in human neuroglobin. RSC Advances, 2019, 9, 4172-4179.	3.6	13
75	Uranyl photocatalysis: precisely controlled oxidation of sulfides with ground-state oxygen. Science China Chemistry, 2020, 63, 291-293.	8.2	13
76	Structural and functional alterations of myoglobin by glucose-protein interactions. Journal of Molecular Modeling, 2014, 20, 2358.	1.8	12
77	A La ³⁺ -selective metallohydrogel with a facile gelator of a phenylalanine derivative containing an imidazole group. Dalton Transactions, 2018, 47, 13788-13791.	3.3	12
78	Peroxidase activity of a myoglobin mutant with three distal histidines forming a metal-binding site: Implications for the cross-reactivity of cytochrome c oxidase. Journal of Molecular Catalysis B: Enzymatic, 2013, 91, 25-31.	1.8	11
79	A resonance light scattering method for the determination of uranium based on a water-soluble salophen and oxalate. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 863-869.	1.5	11
80	Hydrogen-bonding network in heme active site regulates the hydrolysis activity of myoglobin. Journal of Molecular Catalysis B: Enzymatic, 2015, 111, 9-15.	1.8	11
81	Bioinspired design of an artificial peroxidase: introducing key residues of native peroxidases into F43Y myoglobin with a Tyr-heme cross-link. Dalton Transactions, 2020, 49, 5029-5033.	3.3	11
82	Naturally Occurring I81N Mutation in Human Cytochrome <i>c</i> Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS Omega, 2022, 7, 11510-11518.	3.5	11
83	Computational insight into nitration of human myoglobin. Computational Biology and Chemistry, 2014, 52, 60-65.	2.3	10
84	Understanding the choice of copper by heme-copper oxidase using biosynthetic models in myoglobin. Inorganic Chemistry Frontiers, 2017, 4, 918-920.	6.0	10
85	Peroxidase Activity of a <i>c</i> â€₹ype Cytochromeâ€ <i>b</i> ₅ in the Nonâ€Native State is Comparable to that of Native Peroxidases. ChemistryOpen, 2017, 6, 325-330.	1.9	10
86	Biotransformation of Lignin by an Artificial Heme Enzyme Designed in Myoglobin With a Covalently Linked Heme Group. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664388.	4.1	10
87	Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry, 2023, 62, 369-377.	2.5	10
88	The importance of Asn52 in the structure–function relationship of human cytochromec. RSC Advances, 2020, 10, 44768-44772.	3.6	10
89	Forced Unfolding of Apocytochrome b 5 by Steered Molecular Dynamics Simulation. Protein Journal, 2008, 27, 197-203.	1.6	9
90	Early events in thermal unfolding of apocytochrome b562 and its double-cysteine mutant as revealed by molecular dynamics simulation. Computational and Theoretical Chemistry, 2009, 898, 82-89.	1.5	9

#	Article	IF	CITATIONS
91	Probing interactions between uranyl ions and lipid membrane by molecular dynamics simulation. Computational and Theoretical Chemistry, 2011, 976, 130-134.	2.5	9

Computational insight into complex structures of thorium coordination with N, Nâ \in ^{™-} bis(3-allyl) Tj ETQq0 0 0 rgBI_80verlock 10 Tf 50

93	Formation of Cys-heme cross-link in K42C myoglobin under reductive conditions with molecular oxygen. Journal of Inorganic Biochemistry, 2018, 182, 141-149.	3.5	9
94	Neuroglobin is capable of self-oxidation of methionine64 introduced at the heme axial position. Dalton Transactions, 2018, 47, 10847-10852.	3.3	9
95	N-Confused Hexapyrrolic Phlorinoid with NIR Absorption: Synthesis, Fusion, Oxidation, and Copper(II) Coordination. Organic Letters, 2020, 22, 9648-9652.	4.6	9
96	Efficient biodegradation of malachite green by an artificial enzyme designed in myoglobin. RSC Advances, 2021, 11, 16090-16095.	3.6	9
97	Human soluble guanylate cyclase as a nitric oxide sensor for NO-signalling reveals a novel function of nitrite reductase. Chemical Communications, 2013, 49, 7454.	4.1	8
98	Determination of uranium in water based on enzyme inhibition using a wireless magnetoelastic sensor. International Journal of Environmental Analytical Chemistry, 2013, 93, 613-622.	3.3	8
99	Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 367-371.	1.8	8
100	Rational Design of Dual Active Sites in a Single Protein Scaffold: A Case Study of Heme Protein in Myoglobin. ChemistryOpen, 2016, 5, 192-196.	1.9	8
101	Enhanced Dehaloperoxidase Activity of F43Y Myoglobin with a Novel Thyrosine–Heme Crosslink. Chemistry Letters, 2016, 45, 1087-1089.	1.3	8
102	The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. International Journal of Medical Microbiology, 2018, 308, 776-783.	3.6	8
103	Molecular modeling and dynamics simulation of a histidine-tagged cytochrome b 5. Journal of Molecular Modeling, 2011, 17, 971-978.	1.8	7
104	Peroxidase-like activity of L29H myoglobin with two cooperative distal histidines on electrode using O2 as an oxidant. Journal of Electroanalytical Chemistry, 2013, 708, 1-6.	3.8	7
105	Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin. Molecular BioSystems, 2016, 12, 3139-3145.	2.9	7
106	Theoretical investigation into the coordination of <i>R</i> â€l <i>S</i> â€asymmetric uranyl–salophens containing sixâ€membered ring lactam with <i>cis</i> â~'/ <i>trans</i> â€cyclohexylamines. Applied Organometallic Chemistry, 2018, 32, e4387.	3.5	7
107	Expression of lipase-solubilized bovine liver microsomal cytochrome b5 in Escherichia coli as a glutathione S-transferase fusion protein (GST-cyt b5). Protein Expression and Purification, 2006, 45, 352-358.	1.3	6
108	Molecular modeling of cytochrome b 5 with a single cytochrome c-like thioether linkage. Journal of Molecular Modeling, 2012, 18, 1553-1560.	1.8	6

#	Article	IF	CITATIONS
109	Detection of uranium with a wireless sensing method by using salophen as receptor and magnetic nanoparticles as signal-amplifying tags. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298, 1393-1399.	1.5	6
110	Computational insight into asymmetric uranyl-salophen coordinated with cyclohexenone derivatives. Journal of Coordination Chemistry, 2016, 69, 2775-2784.	2.2	6
111	Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose. Molecules, 2021, 26, 5829.	3.8	6
112	A highly selective and sensitive Zn2+ fluorescent sensor based on zinc finger-like peptide and its application in cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120042.	3.9	6
113	Design and engineering of neuroglobin to catalyze the synthesis of indigo and derivatives for textile dyeing. Molecular Systems Design and Engineering, 2022, 7, 239-247.	3.4	6
114	Amino acid derivative-based Ln-metallohydrogels with multi-stimuli responsiveness and applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120901.	3.9	6
115	Peroxidase-like Enzymes Designed from Cytochrome <i>b</i> 5 Exhibit Enhanced Hydrolysis Activity. Chemistry Letters, 2012, 41, 1574-1575.	1.3	5
116	Dynamics comparison of two myoglobins with a distinct heme active site. Journal of Molecular Modeling, 2012, 18, 1591-1596.	1.8	5
117	Biomimetic Mineralization of Cytochrome c Improves the Catalytic Efficiency and Confers a Functional Multi-Enzyme Composite. Catalysts, 2019, 9, 648.	3.5	5
118	A Phenylalanine Derivative Containing a 4â€Pyridine Group Can Construct Both Single Crystals and a Selective Cuâ€Ag Bimetallohydrogel. European Journal of Inorganic Chemistry, 2019, 2019, 1349-1353.	2.0	5
119	A hybrid hydrogel with <i>in situ</i> formed Ag-nanoparticles within 3D networks that exhibits broad antibacterial activities. New Journal of Chemistry, 2020, 44, 7265-7269.	2.8	5
120	Enhanced photocatalytic performance of ZnO/AgCl composites prepared by high-energy mechanical ball milling. New Journal of Chemistry, 2022, 46, 9155-9171.	2.8	5
121	Structural and functional regulations by a disulfide bond designed in myoglobin like human neuroglobin. Chemical Communications, 2022, 58, 5885-5888.	4.1	5
122	Insights into Uranyl Ion Binding to Ubiquitin from Molecular Modeling and Dynamics Simulations. Chemistry Letters, 2011, 40, 1330-1331.	1.3	4
123	Wireless sensing determination of uranium(IV) based on its inhibitory effect on a catalytic precipitation reaction. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289, 893-898.	1.5	4
124	Resonance light scattering for detecting fluoride ions based on the formation of a uranyl coordination supramolecular polymer. Analytical Methods, 2014, 6, 4818-4822.	2.7	4
125	A Chiral Ligand Assembly That Confers Oneâ€Electron O ₂ Reduction Activity for a Cu ²⁺ â€6elective Metallohydrogel. Angewandte Chemie, 2018, 130, 3562-3566.	2.0	4
126	The Xâ€ray crystal structure of human <scp>A15C</scp> neuroglobin reveals both native/de novo disulfide bonds and unexpected ligandâ€binding sites. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1152-1158.	2.6	4

#	Article	IF	CITATIONS
127	Surface Functionalization of SBA-15 for Immobilization of Myoglobin. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	4
128	Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin. RSC Advances, 2022, 12, 18654-18660.	3.6	4
129	Folding behaviors of apocytochrome b5 and its mutants: Insights from high temperature molecular dynamics simulations. Computational and Theoretical Chemistry, 2009, 910, 154-162.	1.5	3
130	Theoretical investigation of uranium(IV) coordinated with N, N′- bis(3-allyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50,622 To 3.4	l (salicylidene
131	Molecular Dynamics Simulation and Kinetic Study of Fluoride Binding to V21C/V66C Myoglobin with a Cytoglobin-like Disulfide Bond. International Journal of Molecular Sciences, 2020, 21, 2512.	4.1	3

132	A facile gelator based on phenylalanine derivative is capable of forming fluorescent Zn-metallohydrogel, detecting Zn2+ in aqueous solutions and imaging Zn2+ in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119378.	3.9	3
133	Spiro-Oxindole Skeleton Compounds Are Efficient Inhibitors for Indoleamine 2,3-Dioxygenase 1: An Attractive Target for Tumor Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 4668.	4.1	3
134	Regulating Effect of Cytochrome b5 Overexpression on Human Breast Cancer Cells. Molecules, 2022, 27, 4556.	3.8	3
135	Assembly of (l+d) â€Tryptophan Derivatives Containing an Imidazole Group Selectively Forms a Rare Purple Ni 2+ â€Hydrogel. ChemistryOpen, 2019, 8, 1172-1175.	1.9	2
136	Functional Conversion of Acetyl-Coenzyme a Synthase to a Nickel Superoxide Dismutase via Rational Design of Coordination Microenvironment for the Nid-Site. International Journal of Molecular Sciences, 2022, 23, 2652.	4.1	2
137	Observation of heme transfer from cytochrome b5 to DNA aptamer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 365-369.	3.9	1
138	Stabilization of cytochrome b 5 by a conserved tyrosine in the secondary sphere of heme active site: A spectroscopic and computational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 174, 118-123.	3.9	1
139	Improving the cell-membrane-penetrating activity of globins by introducing positive charges on protein surface: A case study of sperm whale myoglobin. Biochemical and Biophysical Research Communications, 2022, 598, 26-31.	2.1	1
140	Direct Visualization of Ligands Exchange on the Surfaces of Quantum Dots by a Twoâ€Phase Approach. ChemistrySelect, 2018, 3, 2267-2271.	1.5	0
141	A novel insight into the molecular mechanism of human soluble guanylyl cyclase focused on catalytic domain in living cells. Biochemical and Biophysical Research Communications, 2022, 604, 51-56.	2.1	0