Tong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571838/publications.pdf

Version: 2024-02-01

60 papers

2,894 citations

30 h-index 52 g-index

64 all docs 64
docs citations

64 times ranked 3024 citing authors

#	Article	IF	Citations
1	Protein sulfenylation contributes to oxidative burst-triggered responses during the interaction between Botrytis cinerea and Nicotiana benthamiana. Journal of Proteomics, 2022, 251, 104423.	1.2	6
2	Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Horticulture Research, 2022, 9, uhac066.	2.9	29
3	Increasing the Storability of Fresh-Cut Green Beans by Using Chitosan as a Carrier for Tea Tree and Peppermint Essential Oils and Ascorbic Acid. Plants, 2022, 11, 783.	1.6	5
4	Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. New Phytologist, 2022, 235, 518-532.	3.5	6
5	Sodium pyrosulfite inhibits the pathogenicity of Botrytis cinerea by interfering with antioxidant system and sulfur metabolism pathway. Postharvest Biology and Technology, 2022, 189, 111936.	2.9	8
6	Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry. Food Chemistry, 2021, 342, 128309.	4.2	38
7	Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect. Molecular Horticulture, 2021, 1 , .	2.3	37
8	Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH, 2021, 2, 330-340.	1.8	25
9	Magnolol inhibits gray mold on postharvest fruit by inducing autophagic activity of Botrytis cinerea. Postharvest Biology and Technology, 2021, 180, 111596.	2.9	32
10	Application and mechanism of benzyl-isothiocyanate, a natural antimicrobial agent from cruciferous vegetables, in controlling postharvest decay of strawberry. Postharvest Biology and Technology, 2021, 180, 111604.	2.9	22
11	Advances and Strategies for Controlling the Quality and Safety of Postharvest Fruit. Engineering, 2021, 7, 1177-1184.	3.2	51
12	Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo. Postharvest Biology and Technology, 2020, 159, 111038.	2.9	58
13	Honokiol suppresses mycelial growth and reduces virulence of Botrytis cinerea by inducing autophagic activities and apoptosis. Food Microbiology, 2020, 88, 103411.	2.1	34
14	Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved. Postharvest Biology and Technology, 2020, 161, 111070.	2.9	37
15	SIFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. Plant Physiology, 2020, 184, 2168-2181.	2.3	19
16	Exogenous bamboo pyroligneous acid improves antioxidant capacity and primes defense responses of harvested apple fruit. LWT - Food Science and Technology, 2020, 134, 110191.	2.5	11
17	p-Coumaric acid induces antioxidant capacity and defense responses of sweet cherry fruit to fungal pathogens. Postharvest Biology and Technology, 2020, 169, 111297.	2.9	42
18	Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato. Communications Biology, 2020, 3, 730.	2.0	26

#	Article	IF	CITATIONS
19	Regulatory network of fruit ripening: current understanding and future challenges. New Phytologist, 2020, 228, 1219-1226.	3.5	75
20	Efficacy of commercial polyvalent avian infectious bronchitis vaccines against Chinese QX-like and TW-like strain via different vaccination strategies. Poultry Science, 2020, 99, 4786-4794.	1.5	5
21	Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. International Journal of Molecular Sciences, 2020, 21, 7881.	1.8	25
22	Roles of Aquaporins in Plant-Pathogen Interaction. Plants, 2020, 9, 1134.	1.6	25
23	Molecular basis and regulation of pathogenicity and patulin biosynthesis in <i>Penicillium expansum</i> . Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3416-3438.	5.9	66
24	Reactive oxygen species: A generalist in regulating development and pathogenicity of phytopathogenic fungi. Computational and Structural Biotechnology Journal, 2020, 18, 3344-3349.	1.9	62
25	Administration of dietary recombinant hepcidin on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection under cage aquaculture conditions. Fish and Shellfish Immunology, 2020, 99, 27-34.	1.6	22
26	SIREM1 Triggers Cell Death by Activating an Oxidative Burst and Other Regulators. Plant Physiology, 2020, 183, 717-732.	2.3	34
27	Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit–Pathogen Interactions. International Journal of Molecular Sciences, 2019, 20, 2994.	1.8	90
28	Efficacy of rapamycin in modulating autophagic activity of Botrytis cinerea for controlling gray mold. Postharvest Biology and Technology, 2019, 150, 158-165.	2.9	41
29	Metabolic Dynamics During Loquat Fruit Ripening and Postharvest Technologies. Frontiers in Plant Science, 2019, 10, 619.	1.7	30
30	Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit. Postharvest Biology and Technology, 2019, 149, 42-49.	2.9	51
31	Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms. Postharvest Biology and Technology, 2018, 142, 46-54.	2.9	100
32	Variable-angle epifluorescence microscopy characterizes protein dynamics in the vicinity of plasma membrane in plant cells. BMC Plant Biology, 2018, 18, 43.	1.6	13
33	Efficacy of ABA-Mimicking Ligands in Controlling Water Loss and Maintaining Antioxidative Capacity of <i>Spinacia oleracea</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13397-13404.	2.4	16
34	The mode of action of remorin1 in regulating fruit ripening at transcriptional and postâ€transcriptional levels. New Phytologist, 2018, 219, 1406-1420.	3.5	30
35	Synergistic action of antioxidative systems contributes to the alleviation of senescence in kiwifruit. Postharvest Biology and Technology, 2016, 111, 15-24.	2.9	63
36	Spatiotemporal Dynamics of the BRI1 Receptor and its Regulation by Membrane Microdomains in Living Arabidopsis Cells. Molecular Plant, 2015, 8, 1334-1349.	3.9	131

#	Article	IF	CITATIONS
37	Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1729-1745.	3.1	182
38	\hat{I}^3 -Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta, 2013, 238, 831-843.	1.6	34
39	The regulation of cambial activity in <scp>C</scp> hinese fir (<i><scp>C</scp>unninghamia) Tj ETQq1 1 0.784314</i>	4 ggBT /Ov	verlock 10 T
40	Inhibition of Apoplastic Calmodulin Impairs Calcium Homeostasis and Cell Wall Modeling during Cedrus deodara Pollen Tube Growth. PLoS ONE, 2013, 8, e55411.	1.1	9
41	2, 6-dichlorobenzonitrile Causes Multiple Effects on Pollen Tube Growth beyond Altering Cellulose Synthesis in Pinus bungeana Zucc. PLoS ONE, 2013, 8, e76660.	1.1	25
42	Mutation in SUMO E3 ligase, SIZ1, Disrupts the Mature Female Gametophyte in Arabidopsis. PLoS ONE, 2012, 7, e29470.	1.1	28
43	A Membrane Microdomain-Associated Protein, <i>Arabidopsis</i> Flot1, Is Involved in a Clathrin-Independent Endocytic Pathway and Is Required for Seedling Development. Plant Cell, 2012, 24, 2105-2122.	3.1	200
44	Probing and tracking organelles in living plant cells. Protoplasma, 2012, 249, 157-167.	1.0	10
45	Phosphorylation and ubiquitination of dynaminâ€related proteins (AtDRP3A/3B) synergically regulate mitochondrial proliferation during mitosis. Plant Journal, 2012, 72, 43-56.	2.8	32
46	Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. Journal of Plant Physiology, 2011, 168, 1249-1255.	1.6	11
47	Casparian strip development and its potential function in salt tolerance. Plant Signaling and Behavior, 2011, 6, 1499-1502.	1.2	98
48	Development of Casparian strip in rice cultivars. Plant Signaling and Behavior, 2011, 6, 59-65.	1.2	32
49	The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta, 2010, 231, 779-791.	1.6	23
50	Combined Proteomic and Cytological Analysis of Ca2+-Calmodulin Regulation in Picea meyeri Pollen Tube Growth Â. Plant Physiology, 2009, 149, 1111-1126.	2.3	55
51	Nitric oxide modulates the influx of extracellular Ca ²⁺ and actin filament organization during cell wall construction in <i>Pinus bungeana </i> pollen tubes. New Phytologist, 2009, 182, 851-862.	3.5	82
52	Actin Turnover Is Required for Myosin-Dependent Mitochondrial Movements in Arabidopsis Root Hairs. PLoS ONE, 2009, 4, e5961.	1.1	78
53	Integrative Proteomic and Cytological Analysis of the Effects of Extracellular Ca ²⁺ Influx on <i>Pinus bungeana</i> Pollen Tube Development. Journal of Proteome Research, 2008, 7, 4299-4312.	1.8	34
54	Disruption of Actin Filaments by Latrunculin B Affects Cell Wall Construction in Picea meyeri Pollen Tube by Disturbing Vesicle Trafficking. Plant and Cell Physiology, 2007, 48, 19-30.	1.5	93

TONG CHEN

#	Article	IF	CITATION
55	High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon. Forestry Studies in China, 2007, 9, 182-188.	0.4	3
56	Anatomical and chemical characteristics of foliar vascular bundles in four reed ecotypes adapted to different habitats. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 555-569.	0.6	24
57	Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 658-667.	0.6	24
58	An evaluation for cross-species proteomics research by publicly available expressed sequence tag database search using tandem mass spectral data. Rapid Communications in Mass Spectrometry, 2006, 20, 2635-2640.	0.7	8
59	Elevated CO 2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 2006, 172, 92-103.	3 . 5	302
60	Differential display proteomic analysis of Picea meyeripollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant Journal, 2006, 47, 174-195.	2.8	68