
Raúl R Rodrigues-DÃ-ez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RICORS2040: the need for collaborative research in chronic kidney disease. CKJ: Clinical Kidney Journal, 2022, 15, 372-387.	1.4	45
2	Oxidative Stress and Cellular Senescence Are Involved in the Aging Kidney. Antioxidants, 2022, 11, 301.	2.2	21
3	Epigenetic Modulation of Gremlin-1/NOTCH Pathway in Experimental Crescentic Immune-Mediated Glomerulonephritis. Pharmaceuticals, 2022, 15, 121.	1.7	5
4	CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules, 2022, 12, 252.	1.8	5
5	CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension, 2022, 79, e42-e55.	1.3	9
6	Kidney microRNA Expression Pattern in Type 2 Diabetic Nephropathy in BTBR Ob/Ob Mice. Frontiers in Pharmacology, 2022, 13, 778776.	1.6	6
7	CCN2 Increases TGF-Î ² Receptor Type II Expression in Vascular Smooth Muscle Cells: Essential Role of CCN2 in the TGF-Î ² Pathway Regulation. International Journal of Molecular Sciences, 2022, 23, 375.	1.8	4
8	Demethylation of H3K9 and H3K27 Contributes to the Tubular Renal Damage Triggered by Endoplasmic Reticulum Stress. Antioxidants, 2022, 11, 1355.	2.2	7
9	Interleuquina-17A: posible mediador y diana terapéutica en la hipertensión. Nefrologia, 2021, 41, 244-257.	0.2	5
10	Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia, 2021, 41, 244-257.	0.2	5
11	Renin-angiotensin system and inflammation update. Molecular and Cellular Endocrinology, 2021, 529, 111254.	1.6	42
12	Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Frontiers in Pharmacology, 2021, 12, 662020.	1.6	20
13	Role of Macrophages and Related Cytokines in Kidney Disease. Frontiers in Medicine, 2021, 8, 688060.	1.2	40
14	Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clinical Science, 2021, 135, 1999-2029.	1.8	32
15	Deletion of deltaâ€like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB Journal, 2021, 35, e21213.	0.2	5
16	CCN2 Aggravates the Immediate Oxidative Stress–DNA Damage Response following Renal Ischemia–Reperfusion Injury. Antioxidants, 2021, 10, 2020.	2.2	19
17	Increased miR-7641 Levels in Peritoneal Hyalinizing Vasculopathy in Long-Term Peritoneal Dialysis Patients. International Journal of Molecular Sciences, 2020, 21, 5824.	1.8	4
18	Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001242.	1.2	12

#	Article	IF	CITATIONS
19	Statins: Could an old friend help in the fight against COVIDâ€19?. British Journal of Pharmacology, 2020, 177, 4873-4886.	2.7	101
20	Special Issue "Diabetic Nephropathy: Diagnosis, Prevention and Treatment― Journal of Clinical Medicine, 2020, 9, 813.	1.0	57
21	TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2026-2042.	3.0	8
22	Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 2020, 16, 269-288.	4.1	428
23	Could IL-17A Be a Novel Therapeutic Target in Diabetic Nephropathy?. Journal of Clinical Medicine, 2020, 9, 272.	1.0	32
24	VEGFR2 Blockade Improves Renal Damage in an Experimental Model of Type 2 Diabetic Nephropathy. Journal of Clinical Medicine, 2020, 9, 302.	1.0	21
25	Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nature Communications, 2020, 11, 1943.	5.8	43
26	Molecular Regulation of Notch Signaling by Gremlin. Advances in Experimental Medicine and Biology, 2020, 1227, 81-94.	0.8	8
27	Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clinical Science, 2020, 134, 513-527.	1.8	31
28	IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules, 2020, 10, 1361.	1.8	12
29	Interleukin 17A Participates in Renal Inflammation Associated to Experimental and Human Hypertension. Frontiers in Pharmacology, 2019, 10, 1015.	1.6	36
30	Análisis de la vÃa Notch como una posible diana terapéutica en la patologÃa renal. Nefrologia, 2018, 38, 466-475.	0.2	9
31	Gremlin activates the Notch pathway linked to renal inflammation. Clinical Science, 2018, 132, 1097-1115.	1.8	28
32	Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. Journal of Pathology, 2018, 244, 227-241.	2.1	51
33	FP230VEGFR2 KINASE INHIBITION AGGRAVATES FOLIC ACID INDUCED ACUTE RENAL DAMAGE. Nephrology Dialysis Transplantation, 2018, 33, i107-i107.	0.4	0
34	Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators of Inflammation, 2018, 2018, 1-22.	1.4	93
35	FP080THE NONCANONICAL NOTCH LIGAND DLK1 REGULATES RENAL INFLAMMATION. Nephrology Dialysis Transplantation, 2018, 33, i75-i75.	0.4	0
36	Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators of Inflammation, 2018, 2018, 1-14.	1.4	49

#	Article	IF	CITATIONS
37	Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis. Frontiers in Pharmacology, 2018, 9, 1195.	1.6	29
38	Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrology Dialysis Transplantation, 2017, 32, 1831-1840.	0.4	40
39	Inhibition of Bromodomain and Extraterminal Domain Family Proteins Ameliorates Experimental Renal Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 504-519.	3.0	56
40	The C-Terminal Module IV of Connective Tissue Growth Factor, Through EGFR/Nox1 Signaling, Activates the NF-κB Pathway and Proinflammatory Factors in Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2015, 22, 29-47.	2.5	32
41	Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells. BioMed Research International, 2014, 2014, 1-11.	0.9	44
42	IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney International, 2014, 86, 303-315.	2.6	74
43	The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Laboratory Investigation, 2013, 93, 812-824.	1.7	42
44	Statins Inhibit Angiotensin II/Smad Pathway and Related Vascular Fibrosis, by a TGF-β-Independent Process. PLoS ONE, 2010, 5, e14145.	1.1	58
45	CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-ήB. Journal of the American Society of Nephrology: JASN, 2009, 20, 1513-1526.	3.0	110
46	Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways. Pharmaceutical Research, 2008, 25, 2447-2461.	1.7	64