Shangbin Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571673/publications.pdf

Version: 2024-02-01

76326 128289 8,251 58 40 60 citations h-index g-index papers 64 64 64 7000 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Conjugated microporous polymers: design, synthesis and application. Chemical Society Reviews, 2013, 42, 8012.	38.1	1,459
2	An Azine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 2013, 135, 17310-17313.	13.7	706
3	Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Communications, 2013, 4, 2736.	12.8	528
4	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie - International Edition, 2017, 56, 14149-14153.	13.8	441
5	Covalent triazine frameworks: synthesis and applications. Journal of Materials Chemistry A, 2019, 7, 5153-5172.	10.3	433
6	Pore surface engineering in covalent organic frameworks. Nature Communications, 2011, 2, 536.	12.8	387
7	Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Scientific Reports, 2015, 5, 8225.	3.3	303
8	Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nature Communications, 2015, 6, 7786.	12.8	274
9	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie - International Edition, 2018, 57, 11968-11972.	13.8	266
10	Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. Angewandte Chemie - International Edition, 2013, 52, 2017-2021.	13.8	263
11	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 6007-6014.	13.8	254
12	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	13.7	213
13	Engineering heteroatoms with atomic precision in donor–acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 19775-19781.	10.3	172
14	Design of D–A ₁ –A ₂ Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 9438-9445.	11.2	172
15	Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks. Advanced Materials, 2019, 31, e1807865.	21.0	158
16	Twoâ€Dimensional Tetrathiafulvalene Covalent Organic Frameworks: Towards Latticed Conductive Organic Salts. Chemistry - A European Journal, 2014, 20, 14608-14613.	3.3	147
17	Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nature Communications, 2020, 11, 1149.	12.8	147
18	Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610.	10.3	135

#	Article	IF	CITATIONS
19	Large pore donor–acceptor covalent organic frameworks. Chemical Science, 2013, 4, 4505.	7.4	127
20	Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. Applied Catalysis B: Environmental, 2020, 274, 119096.	20.2	113
21	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie, 2017, 129, 14337-14341.	2.0	83
22	Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology. Advanced Functional Materials, 2019, 29, 1904781.	14.9	80
23	2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chinese Journal of Catalysis, 2022, 43, 1306-1315.	14.0	74
24	Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment. Chemical Engineering Journal, 2017, 326, 109-116.	12.7	67
25	Porosity Modulation in Two-Dimensional Covalent Organic Frameworks Leads to Enhanced Iodine Adsorption Performance. Industrial & Engineering Chemistry Research, 2019, 58, 10495-10502.	3.7	66
26	Recent Advancements in the Synthesis of Covalent Triazine Frameworks for Energy and Environmental Applications. Polymers, 2019, 11, 31.	4.5	65
27	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 6063-6070.	2.0	65
28	Fabrication of Hollow Microporous Carbon Spheres from Hyperâ€Crosslinked Microporous Polymers. Small, 2016, 12, 3134-3142.	10.0	64
29	A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Materials from Imine-Linked Porous Organic Polymers. Scientific Reports, 2018, 8, 4200.	3.3	57
30	Layered Thiazolo[5,4- <i>d</i>] Thiazole-Linked Conjugated Microporous Polymers with Heteroatom Adoption for Efficient Photocatalysis Application. ACS Applied Materials & Englishment (2019), 11, 15861-15868.	8.0	57
31	Palladium as a Superior Cocatalyst to Platinum for Hydrogen Evolution Using Covalent Triazine Frameworks as a Support. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12774-12782.	8.0	56
32	Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance. Chemistry - an Asian Journal, 2018, 13, 1674-1677.	3.3	51
33	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie, 2018, 130, 12144-12148.	2.0	50
34	Stable Covalent Organic Frameworks for Photochemical Applications. ChemPhotoChem, 2019, 3, 973-983.	3.0	48
35	Crystallization of Covalent Triazine Frameworks via a Heterogeneous Nucleation Approach for Efficient Photocatalytic Applications. Chemistry of Materials, 2021, 33, 1994-2003.	6.7	48
36	Donor–Acceptor Charge Migration System of Superhydrophilic Covalent Triazine Framework and Carbon Nanotube toward High Performance Solar Thermal Conversion. ACS Energy Letters, 2020, 5, 1300-1306.	17.4	47

#	Article	IF	CITATIONS
37	Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. Journal of Colloid and Interface Science, 2018, 509, 457-462.	9.4	45
38	An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8, 192-200.	5 . 5	43
39	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. Journal of Materials Chemistry A, 2016, 4, 5737-5744.	10.3	42
40	Efficient Synthesis of Ultrafine Gold Nanoparticles with Tunable Sizes in a Hyper-Cross-Linked Polymer for Nitrophenol Reduction. ACS Applied Nano Materials, 2019, 2, 546-553.	5 . 0	42
41	Morphology design of microporous organic polymers and their potential applications: an overview. Science China Chemistry, 2017, 60, 1056-1066.	8.2	36
42	Highly efficient asymmetric organocatalytic Friedel–Crafts alkylation of indoles with α,β-unsaturated aldehydes. Organic and Biomolecular Chemistry, 2010, 8, 4011.	2.8	31
43	Template-mediated Synthesis of Hollow Microporous Organic Nanorods with Tunable Aspect Ratio. Scientific Reports, 2016, 6, 31359.	3.3	29
44	Two-dimensional crystalline covalent triazine frameworks <i>via</i> dual modulator control for efficient photocatalytic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 16405-16410.	10.3	29
45	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	9.0	27
46	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates. Chemistry - A European Journal, 2016, 22, 1301-1312.	3.3	25
47	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Diterfaces, 2017, 9, 18782-18789.	8.0	24
48	Highly active asymmetric Diels–Alder reactions catalyzed by C2-symmetric bipyrrolidines: catalyst recycling in water medium and insight into the catalytic mode. Tetrahedron, 2010, 66, 3849-3854.	1.9	23
49	C2-Symmetric bipyrrolidines as organocatalysts for asymmetric Diels–Alder reactions. Tetrahedron Letters, 2009, 50, 7388-7391.	1.4	21
50	Covalent triazine frameworks constructed <i>via</i> benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chemical Communications, 2021, 57, 5147-5150.	4.1	21
51	Pyrene-based covalent triazine framework towards high-performance sensing and photocatalysis applications. Science China Materials, 2021, 64, 149-157.	6.3	20
52	Peroxydisulfate bridged photocatalysis of covalent triazine framework for carbamazepine degradation. Chemical Engineering Journal, 2022, 427, 131613.	12.7	18
53	Soluble Hyperbranched Porous Organic Polymers. Macromolecular Rapid Communications, 2018, 39, e1800441.	3.9	13
54	A steric hindrance alleviation strategy to enhance the photo-switching efficiency of azobenzene functionalized metal–organic frameworks toward tailorable carbon dioxide capture. Journal of Materials Chemistry A, 2022, 10, 8303-8308.	10.3	11

#	Article	IF	CITATIONS
55	The Exfoliation of Crystalline Covalent Triazine Frameworks by Glycerol Intercalation. Advanced Materials Interfaces, 2021, 8, 2100374.	3.7	6
56	Dispersive 2D Triptycene-Based Crystalline Polymers: Influence of Regioisomerism on Crystallinity and Morphology. Jacs Au, 2022, 2, 1638-1650.	7.9	5
57	Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromolecular Rapid Communications, 2019, 40, e1900168.	3.9	4