Matteo Mme Metruccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571621/publications.pdf

Version: 2024-02-01

22 papers 730 citations

16 h-index 23 g-index

23 all docs 23 docs citations

23 times ranked 1051 citing authors

#	Article	IF	CITATIONS
1	The RNA Chaperone Hfq Is Involved in Stress Response and Virulence in <i>Neisseria meningitidis</i> and Is a Pleiotropic Regulator of Protein Expression. Infection and Immunity, 2009, 77, 1842-1853.	1.0	84
2	A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements. PLoS Pathogens, 2009, 5, e1000710.	2.1	78
3	Contact lens-related corneal infection: Intrinsic resistance and its compromise. Progress in Retinal and Eye Research, 2020, 76, 100804.	7.3	75
4	Analysis of Two-Component Systems in Group B <i>Streptococcus</i> Shows That RgfAC and the Novel FspSR Modulate Virulence and Bacterial Fitness. MBio, 2014, 5, e00870-14.	1.8	67
5	The Hfq-Dependent Small Noncoding RNA NrrF Directly Mediates Fur-Dependent Positive Regulation of Succinate Dehydrogenase in Neisseria meningitidis. Journal of Bacteriology, 2009, 191, 1330-1342.	1.0	54
6	OxyR tightly regulates catalase expression in <i>Neisseria meningitidis</i> through both repression and activation mechanisms. Molecular Microbiology, 2008, 70, 1152-1165.	1.2	51
7	<i>Propionibacterium acnes</i> host cell tropism contributes to vimentin-mediated invasion and induction of inflammation. Cellular Microbiology, 2012, 14, 1720-1733.	1.1	43
8	Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion. Frontiers in Microbiology, 2016, 7, 871.	1.5	40
9	Adaptive Response of Group B Streptococcus to High Glucose Conditions: New Insights on the CovRS Regulation Network. PLoS ONE, 2013, 8, e61294.	1.1	31
10	Genomic Analysis Reveals the Molecular Basis for Capsule Loss in the Group B Streptococcus Population. PLoS ONE, 2015, 10, e0125985.	1.1	29
11	Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells. MBio, 2019, 10, .	1.8	27
12	The Importance of the Pseudomonas aeruginosa Type III Secretion System in Epithelium Traversal Depends upon Conditions of Host Susceptibility. Infection and Immunity, 2015, 83, 1629-1640.	1.0	26
13	Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Pathogens, 2017, 13, e1006392.	2.1	26
14	IL-1R and MyD88 Contribute to the Absence of a Bacterial Microbiome on the Healthy Murine Cornea. Frontiers in Microbiology, 2018, 9, 1117.	1.5	22
15	A novel murine model for contact lens wear reveals clandestine IL-1R dependent corneal parainflammation and susceptibility to microbial keratitis upon inoculation with Pseudomonas aeruginosa. Ocular Surface, 2019, 17, 119-133.	2.2	22
16	Contributions of MyD88-dependent receptors and CD11c-positive cells to corneal epithelial barrier function against Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 13829.	1.6	20
17	Corneal surface glycosylation is modulated by ILâ€1R and <i>Pseudomonas aeruginosa</i> challenge but is insufficient for inhibiting bacterial binding. FASEB Journal, 2017, 31, 2393-2404.	0.2	11
18	DMBT1 inhibition of Pseudomonas aeruginosa twitching motility involves its N-glycosylation and cannot be conferred by the Scavenger Receptor Cysteine-Rich bacteria-binding peptide domain. Scientific Reports, 2019, 9, 13146.	1.6	8

#	Article	IF	CITATIONS
19	Epithelial cell lysates induce ExoS expression and secretion by Pseudomonas aeruginosa. FEMS Microbiology Letters, 2018, 365, .	0.7	5
20	Nerveâ€associated transient receptor potential ion channels can contribute to intrinsic resistance to bacterial adhesion in vivo. FASEB Journal, 2021, 35, e21899.	0.2	5
21	Human tear fluid modulates the Pseudomonas aeruginosa transcriptome to alter antibiotic susceptibility. Ocular Surface, 2021, 22, 94-102.	2.2	1
22	Quantification of Bacterial Twitching Motility in Dense Colonies Using Transmitted Light Microscopy and Computational Image Analysis. Bio-protocol, 2018, 8, .	0.2	1