Andrea Salis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/357132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Buffer-specific effects arise from ionic dispersion forces. Physical Chemistry Chemical Physics, 2022, 24, 6544-6551.	2.8	7
2	Highly Photostable Carbon Dots from Citric Acid for Bioimaging. Materials, 2022, 15, 2395.	2.9	8
3	Aurivillius Oxides Nanosheets-Based Photocatalysts for Efficient Oxidation of Malachite Green Dye. International Journal of Molecular Sciences, 2022, 23, 5422.	4.1	8
4	Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. Journal of Inorganic Biochemistry, 2022, 234, 111872.	3.5	2
5	A drug delivery system based on poly-L-lysine grafted mesoporous silica nanoparticles for quercetin release. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129343.	4.7	13
6	Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. International Journal of Molecular Sciences, 2021, 22, 788.	4.1	66
7	Adsorption and Release of Sulfamethizole from Mesoporous Silica Nanoparticles Functionalised with Triethylenetetramine. International Journal of Molecular Sciences, 2021, 22, 7665.	4.1	9
8	Electrosynthesised CdS@ZnS quantum dots decorated multi walled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchemical Journal, 2021, 168, 106453.	4.5	12
9	Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112147.	5.0	23
10	Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. Nanoscale, 2021, 13, 16465-16476.	5.6	13
11	Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 2412-2432.	6.7	48
12	Specific Buffer Effects on the Intermolecular Interactions among Protein Molecules at Physiological pH. Journal of Physical Chemistry Letters, 2020, 11, 6805-6811.	4.6	37
13	An amplified electrochemical sensor employing a polymeric film and graphene quantum dots/multiwall carbon nanotubes in a deep eutectic solvent for sensitive analysis of paracetamol and 4-aminophenol. New Journal of Chemistry, 2020, 44, 15742-15751.	2.8	19
14	Electrochemical Detection of Lead Ions with Ordered Mesoporous Silica–Modified Glassy Carbon Electrodes. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	9
15	Improving Metal Adsorption on Triethylenetetramine (TETA) Functionalized SBAâ€15 Mesoporous Silica Using Potentiometry, EPR and ssNMR. Advanced Materials Interfaces, 2020, 7, 2000544.	3.7	6
16	Specific ion effects on the enzymatic activity of alcohol dehydrogenase from <i>Saccharomyces cerevisiae</i> . Physical Chemistry Chemical Physics, 2020, 22, 6749-6754.	2.8	14
17	Specific Anion Effects on Lipase Adsorption and Enzymatic Synthesis of Biodiesel in Nonaqueous Media. Langmuir, 2020, 36, 9465-9471	3.5	10
18	A thermodynamic correction to the theory of competitive chemisorption of ions at surface sites with nonelectrostatic physisorption. Journal of Chemical Physics, 2019, 151, 024701.	3.0	13

#	Article	IF	CITATIONS
19	Enzyme encapsulation in nanostructured self-assembled structures: TowardÂbiofunctional supramolecular assemblies. Current Opinion in Colloid and Interface Science, 2019, 44, 130-142.	7.4	16
20	Glassy Carbon Electrodes Modified with Ordered Mesoporous Silica for the Electrochemical Detection of Cadmium Ions. ACS Omega, 2019, 4, 1410-1415.	3.5	22
21	Adsorption of Cu2+ and Zn2+ on SBA-15 mesoporous silica functionalized with triethylenetetramine chelating agent. Journal of Environmental Chemical Engineering, 2019, 7, 103205.	6.7	39
22	Assembly of Multicomponent Nano-Bioconjugates Composed of Mesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles. ACS Omega, 2019, 4, 11044-11052.	3.5	11
23	Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization. Colloids and Surfaces B: Biointerfaces, 2018, 168, 50-59.	5.0	47
24	Lipase Encapsulation onto ZIFâ€8: A Comparison between Biocatalysts Obtained at Low and High Zinc/2â€Methylimidazole Molar Ratio in Aqueous Medium. ChemCatChem, 2018, 10, 1578-1585.	3.7	44
25	Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers. Chemical Engineering Journal, 2018, 340, 42-50.	12.7	71
26	Lipase and Laccase Encapsulated on Zeolite Imidazolate Framework: Enzyme Activity and Stability from Voltammetric Measurements. ChemCatChem, 2018, 10, 5425-5433.	3.7	40
27	Gold Nanoparticles: A Powerful Tool to Visualize Proteins on Ordered Mesoporous Silica and for the Realization of Theranostic Nanobioconjugates. International Journal of Molecular Sciences, 2018, 19, 1991.	4.1	7
28	A bienzymatic biocatalyst constituted by glucose oxidase and Horseradish peroxidase immobilized on ordered mesoporous silica. Microporous and Mesoporous Materials, 2017, 241, 145-154.	4.4	60
29	Protein-ion Interactions: Simulations of Bovine Serum Albumin in Physiological Solutions of NaCl, KCl and LiCl. Israel Journal of Chemistry, 2017, 57, 403-412.	2.3	16
30	Cation effects on haemoglobin aggregation: balance of chemisorption against physisorption of ions. Interface Focus, 2017, 7, 20160137.	3.0	32
31	Adsorption and release of ampicillin antibiotic from ordered mesoporous silica. Journal of Colloid and Interface Science, 2017, 497, 217-225.	9.4	111
32	Electrolyte effects on enzyme electrochemistry. Current Opinion in Electrochemistry, 2017, 5, 158-164.	4.8	17
33	Silicaâ€modified Electrodes for Electrochemical Detection of Malachite Green. Electroanalysis, 2017, 29, 2602-2609.	2.9	20
34	Specific Ion Effects on the Mediated Oxidation of NADH. ChemElectroChem, 2017, 4, 3075-3080.	3.4	8
35	Mesoporous Silica Nanoparticles Functionalized with Hyaluronic Acid and Chitosan Biopolymers. Effect of Functionalization on Cell Internalization. ACS Biomaterials Science and Engineering, 2016, 2, 741-751.	5.2	51
36	Are specific buffer effects the new frontier of Hofmeister phenomena? Insights from lysozyme adsorption on ordered mesoporous silica. RSC Advances, 2016, 6, 94617-94621.	3.6	22

#	Article	IF	CITATIONS
37	Not only pH. Specific buffer effects in biological systems. Current Opinion in Colloid and Interface Science, 2016, 23, 1-9.	7.4	68
38	Hofmeister effects at low salt concentration due to surface charge transfer. Current Opinion in Colloid and Interface Science, 2016, 23, 41-49.	7.4	40
39	Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials. Colloids and Surfaces B: Biointerfaces, 2016, 137, 77-90.	5.0	31
40	Hofmeister Phenomena in Bioelectrochemistry: The Supporting Electrolyte Affects the Response of Glucose Electrodes. ChemElectroChem, 2015, 2, 659-663.	3.4	20
41	The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces. Journal of Chemical Physics, 2015, 142, 134707.	3.0	31
42	The molecular motion of bovine serum albumin under physiological conditions is ion specific. Chemical Communications, 2015, 51, 6663-6666.	4.1	80
43	Silver Enhancement for Transmission Electron Microscopy Imaging of Antibody Fragment–Gold Nanoparticles Conjugates Immobilized on Ordered Mesoporous Silica. Langmuir, 2015, 31, 9458-9463.	3.5	12
44	Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chemical Society Reviews, 2014, 43, 7358-7377.	38.1	455
45	Adsorption of Lysozyme on Hyaluronic Acid Functionalized SBA-15 Mesoporous Silica: A Possible Bioadhesive Depot System. Langmuir, 2014, 30, 12996-13004.	3.5	33
46	From self-assembly fundamental knowledge to nanomedicine developments. Advances in Colloid and Interface Science, 2014, 205, 48-67.	14.7	29
47	lonic strength affects lysozyme adsorption and release from SBA-15 mesoporous silica. Microporous and Mesoporous Materials, 2013, 170, 164-172.	4.4	56
48	Sulfonic acid-functionalized mesoporous silicas: Microcalorimetric characterization and catalytic performance toward biodiesel synthesis. Microporous and Mesoporous Materials, 2013, 179, 54-62.	4.4	40
49	Interplay of ion specificity, pH and buffers: insights from electrophoretic mobility and pH measurements of lysozyme solutions. RSC Advances, 2013, 3, 5882.	3.6	49
50	Specific Cation Effects on Hemoglobin Aggregation below and at Physiological Salt Concentration. Langmuir, 2013, 29, 15350-15358.	3.5	62
51	Specific ion effects on the electrochemical properties of cytochrome c. Physical Chemistry Chemical Physics, 2012, 14, 2875.	2.8	26
52	Hofmeister series reversal for lysozyme by change in pH and salt concentration: insights from electrophoretic mobility measurements. Physical Chemistry Chemical Physics, 2012, 14, 4343.	2.8	70
53	Hofmeister Challenges: Ion Binding and Charge of the BSA Protein as Explicit Examples. Langmuir, 2012, 28, 16355-16363.	3.5	81
54	3D vision of human lysozyme adsorbed onto a SBA-15 nanostructured matrix. Chemical Communications, 2011, 47, 7338.	4.1	36

#	Article	IF	CITATIONS
55	Possible Origin of the Inverse and Direct Hofmeister Series for Lysozyme at Low and High Salt Concentrations. Langmuir, 2011, 27, 9504-9511.	3.5	119
56	Structure–activity relationships of various amino-hydroxy-benzenesulfonic acids and sulfonamides as tyrosinase substrates. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 799-807.	2.4	18
57	Measurements and Theoretical Interpretation of Points of Zero Charge/Potential of BSA Protein. Langmuir, 2011, 27, 11597-11604.	3.5	206
58	Physical and Chemical Lipase Adsorption on SBAâ€15: Effect of Different Interactions on Enzyme Loading and Catalytic Performance. ChemCatChem, 2010, 2, 322-329.	3.7	54
59	Effect of oxidation level of n+-type mesoporous silicon surface on the adsorption and the catalytic activity of Candida rugosa lipase. Journal of Colloid and Interface Science, 2010, 345, 448-453.	9.4	13
60	Specific Ion Effects on Adsorption of Lysozyme on Functionalized SBA-15 Mesoporous Silica. Journal of Physical Chemistry B, 2010, 114, 7996-8001.	2.6	54
61	Why Direct or Reversed Hofmeister Series? Interplay of Hydration, Non-electrostatic Potentials, and Ion Size. Langmuir, 2010, 26, 3323-3328.	3.5	111
62	Ion Specific Surface Charge Density of SBA-15 Mesoporous Silica. Langmuir, 2010, 26, 2484-2490.	3.5	84
63	Lysozyme Adsorption and Release from Ordered Mesoporous Materials. Journal of Physical Chemistry C, 2010, 114, 19928-19934.	3.1	70
64	Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: Immobilisation and use for the oxidation of phenolic compounds. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 175-180.	1.8	91
65	Role of the support surface on the loading and the activity of Pseudomonas fluorescens lipase used for biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 262-269.	1.8	81
66	Hofmeister Effects in Enzymatic Activity, Colloid Stability and pH Measurements: Ion-Dependent Specificity of~Intermolecular Forces. , 2009, , 159-194.		2
67	Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 2008, 54, 19-26.	1.8	119
68	Specific Anion Effects on Enzymatic Activity in Nonaqueous Media. Journal of Physical Chemistry B, 2008, 112, 12066-12072.	2.6	63
69	Hofmeister Effects in Enzymatic Activity:Â Weak and Strong Electrolyte Influences on the Activity ofCandida rugosaLipase. Journal of Physical Chemistry B, 2007, 111, 1149-1156.	2.6	117
70	Porous silicon-based potentiometric biosensor for triglycerides. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1434-1438.	1.8	36
71	Use of Lipases for the Production of Biodiesel. , 2007, , 317-339.		15
72	Specific Anion Effects on Glass Electrode pH Measurements of Buffer Solutions:Â Bulk and Surface Phenomena. Journal of Physical Chemistry B, 2006, 110, 2949-2956.	2.6	113

#	ARTICLE	IF	CITATIONS
73	Commercial lipase immobilization on Accurel MP 1004 porous polypropylene. Biocatalysis and Biotransformation, 2005, 23, 381-386.	2.0	12
74	Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 2005, 119, 291-299.	3.8	229
75	Reply to "Comments on â€~Hofmeister Series: Hydrolytic Activity ofAspergillusnigerLipase Depends on Specific Anion Effects'â€, Journal of Physical Chemistry B, 2005, 109, 14752-14754.	2.6	5
76	Comment on "Hofmeister Series: The Hydrolytic Activity ofAspergillusnigerLipase Depends on Specific Anion Effectsâ€: Journal of Physical Chemistry B, 2005, 109, 14750-14751.	2.6	2
77	Hofmeister Series:Â The Hydrolytic Activity ofAspergillus nigerLipase Depends on Specific Anion Effects. Journal of Physical Chemistry B, 2005, 109, 5406-5408.	2.6	96
78	Physical and Chemical Adsorption ofMucorjavanicusLipase on SBA-15 Mesoporous Silica. Synthesis, Structural Characterization, and Activity Performance. Langmuir, 2005, 21, 5511-5516.	3.5	143
79	Note: Fractionation of Sheep Milk Fat Via Supercritical Carbon Dioxide. Food Science and Technology International, 2004, 10, 421-425.	2.2	5
80	Novel mannitol based non-ionic surfactants from biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 139-146.	1.8	10
81	Novel mannitol based non-ionic surfactants from biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 233-236.	1.8	5
82	Wax esters synthesis from heavy fraction of sheep milk fat and cetyl alcohol by immobilised lipases. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 167-174.	1.8	43
83	Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilisation. Journal of Molecular Catalysis B: Enzymatic, 2003, 24-25, 75-82.	1.8	63
84	The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginosa. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 145-151.	2.3	64
85	Porous Silicon-based Electrochemical Biosensors. , 0, , .		5

86 Excess enthalpies of [CnMIM][NTf2] n = (2 or 10) + ethanol or + N-methyl-2-pyrrolidone binary mixtures at 298.15ÂK and 0.1ÂMPa. Journal of Thermal Analysis and Calorimetry, 0, , 1.