
Oleh I Shpotyuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3571097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative study of free-volume changes in light-cured (dimeth)acrylate-type dental resin composites affected to artificial aging in dry-air and water-immersed mode. Applied Nanoscience (Switzerland), 2022, 12, 449-457.	1.6	1
2	Cluster Modeling of Network-Forming Amorphization Pathways in AsxS100â^'x Arsenicals (50 â‰ â €‰xâ€ Diven by Nanomilling. Journal of Cluster Science, 2022, 33, 1525-1541.	‰â‰ â €% 1.7	57) 1
3	The Art of Positronics in Contemporary Nanomaterials Science: A Case Study of Sub-Nanometer Scaled Glassy Arsenoselenides. Materials, 2022, 15, 302.	1.3	5
4	Cluster modeling of nanostructurization-driven reamorphization pathways in glassy arsenoselenides: a case study of arsenic monoselenide g-AsSe. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	0
5	On the glass-transition temperature T in chalcogenide glass-forming systems: Critical assessment on compositional changes within covalent bond approach. Physica B: Condensed Matter, 2021, 603, 412720.	1.3	4
6	Parameterization of photobleaching and photodarkening in-situ kinetics in thermally deposited GeSe2 thin films. Thin Solid Films, 2021, 726, 138659.	0.8	5
7	Probing calorimetric heat transfer phenomena in multi-nanophase substances: A case study of some over-stoichiometric nanoarsenicals. Thermochimica Acta, 2021, 701, 178955.	1.2	0
8	High-Energy Mechanical Milling-Driven Reamorphization in Glassy Arsenic Monoselenide: On the Path of Tailoring Special Molecular-Network Glasses. Materials, 2021, 14, 4478.	1.3	8
9	On the paradigm of physical aging in stoichiometric As2Se3 glass as illusory manifestation of anti-aging ability in optimally-constrained covalent networks. Coordination Chemistry Reviews, 2021, 449, 214211.	9.5	1
10	Computational insight on molecular-network disproportionality in over-stoichiometric AsxS100â^'x nanoarsenicals (57A<ÂxÂ<Â67). Computational Materials Science, 2021, 198, 110715.	1.4	1
11	SDS-Stabilized CuInSe2/ZnS Multinanocomposites Prepared by Mechanochemical Synthesis for Advanced Biomedical Application. Nanomaterials, 2021, 11, 69.	1.9	6
12	Correlation of the glass transition temperature and average energetic connectivity in network chalcogenide glasses. Computational Problems of Electrical Engineering, 2021, 11, 32-37.	0.2	0
13	Effect of highâ€energy mechanical milling on the mediumâ€range ordering in glassy Asâ€Se. Journal of the American Ceramic Society, 2020, 103, 1631-1646.	1.9	11
14	On the glass transition temperature TÂagainst molar volume VÂplotting in arsenoselenide glasses. Journal of Non-Crystalline Solids, 2020, 528, 119758.	1.5	9
15	Microstructure and luminescent properties of Eu3+-activated MgGa2O4:Mn2+ ceramic phosphors. Journal of Advanced Ceramics, 2020, 9, 432-443.	8.9	23
16	Milling-driven nanonization of As S100- alloys from second glass-forming region: The case of lower-crystalline arsenicals (56 <x<66). 120339.<="" 2020,="" 549,="" journal="" non-crystalline="" of="" solids,="" td=""><td>1.5</td><td>4</td></x<66).>	1.5	4
17	Impact of grinding media on high-energy ball milling-driven amorphization in multiparticulate As4S4/ZnS/Fe3O4 nanocomposites. Advanced Powder Technology, 2020, 31, 3610-3617.	2.0	8
18	Light-curing effects in acrylic-type dental nanocomposites probed by annihilating positrons: the case of densely monolith ĐCTA-3® restoratives. Applied Nanoscience (Switzerland), 2020, 10, 4791-4796.	1.6	0

#	Article	IF	CITATIONS
19	Volumetric effects in the degradation of dimethacrylate-based polymer/filler nanocomposites: A positron annihilation study. Polymer Degradation and Stability, 2020, 176, 109150.	2.7	10
20	Cluster modelling of amorphization pathways in nanostructured arsenic monosulphide. Applied Nanoscience (Switzerland), 2020, 10, 4689-4694.	1.6	3
21	Preparation of As4S4/Fe3O4 nanosuspensions and in-vitro verification of their anticancer activity. Materials Science and Engineering C, 2020, 110, 110683.	3.8	8
22	Light-curing effects in acrylic-type dental nanocomposites probed by annihilating positrons: the case of loosely monolith DipolÁ® restoratives. Applied Nanoscience (Switzerland), 2020, 10, 4753-4758.	1.6	0
23	Preparation and characterization of stable fluorescent As4S4/ZnS/Fe3O4 nanosuspension capped by Poloxamer 407 and folic acid. Applied Nanoscience (Switzerland), 2020, 10, 4651-4660.	1.6	5
24	Milling-driven nanonization of As S100- alloys from second glass-forming region: The case of higher-crystalline arsenicals (51 <x<56). 120086.<="" 2020,="" 539,="" journal="" non-crystalline="" of="" solids,="" td=""><td>1.5</td><td>4</td></x<56).>	1.5	4
25	Photopolymerization shrinkage in dimethacrylate-based dental restorative composites probed by means of positron annihilation lifetime spectroscopy. Polymer, 2020, 196, 122485.	1.8	9
26	PALS probing of photopolymerization shrinkage in densely packed acrylate-type dental restorative composites. Polimery W Medycynie, 2020, 49, 49-56.	0.6	1
27	Structure, Morphology, and Optical-Luminescence Properties of Eu3+- and Mn2+-Activated ZnGa2O4 and MgGa2O4 Ceramics. Springer Proceedings in Physics, 2020, , 363-378.	0.1	0
28	Thermal-alteration interphase transformations in natural and synthetic arsenic sulfide polymorphs. Journal of Chemical Thermodynamics, 2019, 128, 110-118.	1.0	5
29	Combined configuration-enthalpy model describing radiation-optical responses in chalcogenide semiconductor glasses. Radiation Physics and Chemistry, 2019, 165, 108401.	1.4	3
30	Processing of natural mineral magnetite for medical applications. , 2019, , 125-147.		0
31	Upconversion fluorescence assisted visualization of femtosecond laser filaments in Er-doped chalcohalide 65GeS2-25Ga2S3-10CsCl glass. Optics and Laser Technology, 2019, 119, 105621.	2.2	3
32	Amorphization diversity driven by high-energy mechanical milling in β-As4S4 polymorph. Materials Today Communications, 2019, 21, 100679.	0.9	5
33	Medium-range structural changes in glassy As2S3 driven by high-energy mechanical milling. Journal of Non-Crystalline Solids, 2019, 505, 347-353.	1.5	6
34	Critical remark on the FSDP-related correlations in chalcogenide glasses as treated in the paper [Alekberov RI, Isayev AI, Mekhtiyeva SI, Fábián M. Local structures and optical properties of As-Se-Te(S) chalcogenide glasses. Phys B: Condens Matter 2018; 550: 367–375]. Results in Physics, 2019, 12, 2098-2099.	2.0	0
35	DSC TOPEM® study of high-energy mechanical milling-driven amorphization in β-As4S4-based arsenicals. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2935-2941.	2.0	10
36	Structural investigation of crystallized Ge-Ga-Se chalcogenide glasses. IOP Conference Series: Materials Science and Engineering, 2019, 503, 012020.	0.3	3

#	Article	IF	CITATIONS
37	Multiparticle composites based on nanostructurized arsenic sulfides As4S4 in biomedical engineering. , 2019, , 119-151.		1
38	Freeâ€volume structure of polyvinylpyrrolidoneâ€capped glassy As ₂ Se ₃ nanocomposites prepared by mechanical milling. Polymer Engineering and Science, 2019, 59, 2438-2442.	1.5	1
39	Multichannel Positron Trapping Models for Describing Transformation of Free Volumes in Nanostructured Functional Materials. , 2019, , .		0
40	Structural analysis of Se-rich arsenoselenide glass nanoparticles obtained by high-energy mechanical milling. AIP Conference Proceedings, 2019, , .	0.3	0
41	Effect of Er3+-doping on 65GeS2-25Ga2S3-10CsCl glass probed by annihilating positrons. Optical Materials, 2019, 88, 625-629.	1.7	4
42	Effect of high-energy mechanical milling on the FSDP-related XRPD correlations in Se-rich glassy arsenic selenides. Journal of Physics and Chemistry of Solids, 2019, 124, 318-326.	1.9	12
43	Structure, morphology and optical-luminescence investigations of spinel ZnGa2O4 ceramics co-doped with Mn2+ and Eu3+ ions. Applied Nanoscience (Switzerland), 2019, 9, 907-915.	1.6	7
44	Free volume studies on mechanochemically milled β-As4S4 arsenical employing positron annihilation lifetime spectroscopy. Applied Nanoscience (Switzerland), 2019, 9, 647-656.	1.6	8
45	Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications. Ukrainian Journal of Physics, 2019, 64, 457.	0.1	1
46	Phenomenology of γ-irradiation-induced changes in optical properties of chalcogenide semiconductor glasses: A case study of binary arsenic sulfides. Journal of Non-Crystalline Solids, 2018, 498, 315-322.	1.5	13
47	Comment on "Molecular origin of aging of pure Se glass: Growth of inter-chain structural correlations, network compaction, and partial ordering―[J. Chem. Phys. 146, 224506 (2017)]. Journal of Chemical Physics, 2018, 148, 157101.	1.2	2
48	Free-volume characterization of nanostructurized substances by positron annihilation lifetime spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2018, 416, 102-109.	0.6	22
49	Stretched-to-compressed-exponential crossover observed in the electrical degradation kinetics of some spinel-metallic screen-printed structures. Chemical Physics, 2018, 501, 121-127.	0.9	5
50	Probing vacancy-type free-volume defects in Li2B4O7 single crystal by positron annihilation lifetime spectroscopy. Journal of Physics and Chemistry of Solids, 2018, 112, 8-13.	1.9	9
51	Photoelastic and acousto-optic effects in 65GeS2-25Ga2S3-10CsCl glass. Journal of Non-Crystalline Solids, 2018, 481, 160-163.	1.5	7
52	Modified Positron Annihilation Lifetime Spectroscopy Method for Investigation of Nanomaterials with Advanced Porosity. , 2018, , .		1
53	Microstructure of Modified Cu0.4 Ni0.4 Co0.4 Mn1.8 O4 Ceramics for Temperature Sensor Electronics. , 2018, , .		0
54	Luminescence and Nanopores in Spinel ZnGa2O4 Ceramics Doped with Mn2+ lons: Synthesis and Properties of Nanomaterials. , 2018, , .		0

#	Article	IF	CITATIONS
55	Mechanochemically driven amorphization of nanostructurized arsenicals, the case of β-As4S4. Journal of Materials Science, 2018, 53, 13464-13476.	1.7	20
56	Photoresponse of inorganic-organic thin film composites based on chalcogenide glasses. AIP Conference Proceedings, 2018, , .	0.3	0
57	Free-volume structure of glass-As2Se3/PVP nanocomposites prepared by mechanochemical milling. AIP Conference Proceedings, 2018, , .	0.3	1
58	Structural Study of the Modified Cu0.4Co0.4Ni0.4Mn1.8O4 and Cu0.1Ni0.8Co0.2Mn1.9O4 Ceramics Using Combined Methods. Springer Proceedings in Physics, 2018, , 459-474.	0.1	0
59	Grain Porous Structure and Exploitation Properties of Humidity-Sensitive Magnesium Aluminate Spinel-Type Ceramics. Springer Proceedings in Physics, 2018, , 499-519.	0.1	1
60	Degradation-relaxation phenomenology in nanocomposites: On the linearized kinetics crossover. AIP Conference Proceedings, 2018, , .	0.3	0
61	Water-Sorption Effects near Grain Boundaries in Modified MgO-Al ₂ O ₃ Ceramics Tested with Positron-Positronium Trapping Algorithm. Acta Physica Polonica A, 2018, 133, 864-868.	0.2	4
62	Light-cured dimethacrylate dental restorative composites under a prism of annihilating positrons. Polimery W Medycynie, 2018, 47, 91-100.	0.6	2
63	<scp>PVP</scp> â€stabilized arsenic sulfide <scp>A</scp> s ₄ <scp>S</scp> ₄ nanocomposites probed with positron annihilation lifetime spectroscopy. Polymer Engineering and Science, 2017, 57, 502-505.	1.5	7
64	Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study. Nanoscale Research Letters, 2017, 12, 75.	3.1	4
65	Positron lifetime spectroscopy of lithium tetraborate Li2B4O7 glass. Journal of Non-Crystalline Solids, 2017, 471, 338-343.	1.5	16
66	Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications. Nanoscale Research Letters, 2017, 12, 328.	3.1	44
67	Microstructure Hierarchical Model of Competitive e+-Ps Trapping in Nanostructurized Substances: from Nanoparticle-Uniform to Nanoparticle-Biased Systems. Nanoscale Research Letters, 2017, 12, 72.	3.1	7
68	Microstructure characterization of multifunctional As4S4/Fe3O4 nanocomposites prepared by high-energy mechanical milling. Materials Characterization, 2017, 132, 303-311.	1.9	15
69	Influence of Free Volumes on Functional Properties of Modified Chalcogenide Glasses and Oxide Ceramics. Springer Proceedings in Physics, 2017, , 479-493.	0.1	4
70	Near-IR emission of Er3+ ions in CsCl-Ga-Ge-S glasses excited by visible light. Optical Materials, 2017, 72, 195-200.	1.7	9
71	Preparation, properties and anticancer effects of mixed As4S4/ZnS nanoparticles capped by Poloxamer 407. Materials Science and Engineering C, 2017, 71, 541-551.	3.8	25
72	Properties of arsenic sulphide (β-As4S4) modified by mechanical activation. Journal of Materials Science, 2017, 52, 1747-1758.	1.7	26

#	Article	IF	CITATIONS
73	Nanostructurization effects in PVP-stabilized tetra-arsenic tetra-sulfide As4S4 nanocomposites. Materials Chemistry and Physics, 2017, 186, 251-260.	2.0	15
74	Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Applied Surface Science, 2017, 394, 604-612.	3.1	10
75	Ageing processes in one-, two- and three-layered thick films based on modified thermistor ceramics. , 2017, , .		1
76	Kinetics models describing degradation-relaxation effects in nanoinhomogeneous substances. Journal of Physics: Conference Series, 2017, 936, 012050.	0.3	1
77	Mathematical modeling of elementary trapping-reduction processes in positron annihilation lifetime spectroscopy: methodology of Ps-to-positron trapping conversion. Journal of Physics: Conference Series, 2017, 936, 012049.	0.3	3
78	Positron annihilation lifetime study of atomic imperfections in nanostructurized solids: On the parameterized trapping in wetâ€milled arsenic sulfides As ₄ S ₄ . Physica Status Solidi (B): Basic Research, 2016, 253, 1054-1059.	0.7	20
79	Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 2016, 42, 601-605.	0.2	44
80	Analytical Description of Degradation-Relaxation Transformations in Nanoinhomogeneous Spinel Ceramics. Nanoscale Research Letters, 2016, 11, 499.	3.1	32
81	Solid-state amorphization of As 45 S 55 alloy induced by high-energy mechanical milling. Thermochimica Acta, 2016, 642, 59-66.	1.2	16
82	Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons. Nanoscale Research Letters, 2016, 11, 528.	3.1	6
83	Probing Sub-atomistic Free-Volume Imperfections in Dry-Milled Nanoarsenicals with PAL Spectroscopy. Nanoscale Research Letters, 2016, 11, 10.	3.1	14
84	Free-Volume Nanostructurization in Ga-Modified As2Se3 Glass. Nanoscale Research Letters, 2016, 11, 20.	3.1	9
85	Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study. Nanoscale Research Letters, 2016, 11, 133.	3.1	32
86	Freeâ€volume nanostructural transformation in crystallized GeS ₂ –Ga ₂ S ₃ –CsCl glasses. Materialwissenschaft Und Werkstofftechnik, 2016, 47, 198-202.	0.5	17
87	On the energetic criterion for destructive clustering of metallic nanoparticles in chalcogenide and oxide glassy matrices. Physica Status Solidi (B): Basic Research, 2016, 253, 494-498.	0.7	2
88	Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses. Radiation Measurements, 2016, 90, 117-121.	0.7	23
89	Nanostructural Free-Volume Effects in Humidity-Sensitive MgO-Al2O3 Ceramics for Sensor Applications. Journal of Materials Engineering and Performance, 2016, 25, 866-873.	1.2	33
90	On the compositional diversity of physical aging kinetics in chalcogenide glasses. Journal of Non-Crystalline Solids, 2016, 437, 1-5.	1.5	5

#	Article	IF	CITATIONS
91	Effect of rare-earth doping on the free-volume structure of Ga-modified Te ₂₀ As ₃₀ Se ₅₀ glass. RSC Advances, 2016, 6, 22797-22802.	1.7	8
92	Influence of CsCl addition on the nanostructured voids and optical properties of 80GeS2-20Ga2S3 glasses. Optical Materials, 2016, 59, 39-42.	1.7	29
93	Radiation-induced bond switching in chalcogenide semiconductor glasses from first-principles quantum-chemical calculations: On the role of dipole-type charged coordination defects. Computational Materials Science, 2016, 113, 112-116.	1.4	2
94	PAL spectroscopy of rare-earth doped Ga–Ge–Te/Se glasses. Journal of Physics and Chemistry of Solids, 2016, 91, 76-79.	1.9	8
95	Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 419-425.	1.4	12
96	Crossover between cooperative and fractal relaxation in complex glass-formers. Journal of Physics Condensed Matter, 2016, 28, 355101.	0.7	14
97	Free-volume Study in GeS2-Ga2S3-CsCl Chalcohalide Glasses Using Positron Annihilation Technique. Physics Procedia, 2015, 76, 145-148.	1.2	9
98	Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics. Medziagotyra, 2015, 21, .	0.1	29
99	Characterization of radiation-induced effects in amorphous arsenic sulfides by positron annihilation lifetime spectroscopy. Journal of Materials Research, 2015, 30, 1422-1429.	1.2	13
100	Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique. Materials Chemistry and Physics, 2015, 155, 76-82.	2.0	3
101	Medium range order and structural relaxation in As–Se network glasses through FSDP analysis. Materials Chemistry and Physics, 2015, 153, 432-442.	2.0	13
102	Positronics of radiation-induced effects in chalcogenide glassy semiconductors. Semiconductors, 2015, 49, 298-304.	0.2	3
103	Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool. Nanoscale Research Letters, 2015, 10, 77.	3.1	48
104	'Cold' crystallization in nanostructurized 80GeSe2-20Ga2Se3 glass. Nanoscale Research Letters, 2015, 10, 49.	3.1	43
105	Intrinsic phase separation in low-temperature quenched arsenic trisulfide glass. Journal of Non-Crystalline Solids, 2015, 430, 16-20.	1.5	8
106	Compositionally-dependent structural variations in glassy chalcogenides: The case of binary AsSe system. Computational Materials Science, 2015, 110, 144-151.	1.4	16
107	Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. Journal of Materials Science, 2015, 50, 1973-1985.	1.7	50
108	Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Physica B: Condensed Matter, 2015, 459, 116-121.	1.3	31

OLEH | SHPOTYUK

#	Article	IF	CITATIONS
109	Free volume structure of realgar α-As4S4 by positron annihilation lifetime spectroscopy. Journal of Physics and Chemistry of Solids, 2015, 79, 49-54.	1.9	17
110	Chaotic behavior of light-assisted physical aging in arsenoselenide glasses. Chaos, 2014, 24, 043138.	1.0	1
111	Physico-Chemical and Biological Properties of Arsenic Sulfide (As ₅₅ S ₄₅) Nanosuspension Prepared by Milling. Acta Physica Polonica A, 2014, 126, 902-906.	0.2	5
112	O-Ps-related modes for study of free-volume entities in nanostructured MgAl <inf>2</inf> O <inf>4</inf> ceramics. , 2014, , .		0
113	Multilayer thick-film structures based on spinel ceramics. Canadian Journal of Physics, 2014, 92, 822-826.	0.4	27
114	Positronics of IR transmitting chalcohalide glass-ceramics. , 2014, , .		1
115	Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. International Journal of Nanotechnology, 2014, 11, 843.	0.1	29
116	Fine kinetics of natural physical ageing in glassy As10Se90. Physica B: Condensed Matter, 2014, 434, 21-25.	1.3	5
117	Thermally-induced crystallization behaviour of 80GeSe2–20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy. Journal of Alloys and Compounds, 2014, 582, 323-327.	2.8	41
118	Physical ageing of chalcogenide glasses. , 2014, , 209-264.		14
119	Long-term natural physical aging in glassy Ge5Se95 as probed by combined NMR and PAL spectroscopy. Journal of Non-Crystalline Solids, 2014, 392-393, 1-5.	1.5	4
120	Positron annihilation probing of crystallization effects in TAS-235 glass affected by Ga additions. Journal of Physics and Chemistry of Solids, 2014, 75, 1049-1053.	1.9	10
121	Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary AsS system. Journal of Non-Crystalline Solids, 2014, 386, 95-99.	1.5	11
122	Surface oxidation in glassy arsenic trisulphide induced by high-energy Î ³ -irradiation. Radiation Physics and Chemistry, 2014, 97, 341-345.	1.4	7
123	Kinetics of light-assisted physical ageing in chalcogenide glasses. Journal of Materials Science, 2014, 49, 2844-2852.	1.7	8
124	Evolution of porous structure and free-volume entities in magnesium aluminate spinel ceramics. Ceramics International, 2014, 40, 8561-8567.	2.3	37
125	Natural physical aging in glassy As–Se: A comparative study of chaotic behavior with enhanced results analysis. Journal of Non-Crystalline Solids, 2014, 386, 8-13.	1.5	8
126	Crystallization processes in Ge-Ga-Se glasses studied with positron annihilation technique. , 2014, , .		3

#	Article	IF	CITATIONS
127	Coordination disordering in near-stoichiometric arsenic sulfide glass. Journal of Non-Crystalline Solids, 2014, 402, 236-243.	1.5	20
128	Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectronics Reliability, 2014, 54, 2843-2848.	0.9	31
129	Free volume evolution in chalcogenide glasses as probed by PAL spectroscopy. Solid State Ionics, 2014, 267, 38-43.	1.3	14
130	Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Research Letters, 2014, 9, 149.	3.1	28
131	Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements. Nuclear Instruments & Methods in Physics Research B, 2014, 338, 66-71.	0.6	21
132	FSDP-related correlations in Î ³ -irradiated chalcogenide semiconductor glasses: The case of glassy arsenic trisulphide g-As2S3 revised. Journal of Physics and Chemistry of Solids, 2013, 74, 1721-1725.	1.9	12
133	Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. Journal of Non-Crystalline Solids, 2013, 377, 49-53.	1.5	20
134	Influence of Bi on topological self-organization in arsenic and germanium selenide networks. Journal of Materials Chemistry C, 2013, 1, 6677.	2.7	16
135	Comparative study of extended free-volume defects in As- and Ge-based glassy semiconductors: theoretical prediction and experimental probing with PAL technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 117-120.	0.8	11
136	Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 125-128.	0.8	6
137	Bond-changing structural rearrangement in glassy As3Se7 associated with long-term physical aging. Journal of Non-Crystalline Solids, 2013, 377, 43-45.	1.5	7
138	Stretched exponential parameterization of in-situ photodarkening kinetics in amorphous As–Se films. Journal of Non-Crystalline Solids, 2013, 377, 182-185.	1.5	4
139	Structural organization of As-rich selenide glasses. Solid State Communications, 2013, 165, 22-26.	0.9	11
140	Are the Temperature Sensors Based on Chalcogenide Glass Possible?. Solid State Phenomena, 2013, 200, 316-320.	0.3	0
141	On the Kinetics Description of Below-T _g Structural Relaxation in Network Glass Formers. Solid State Phenomena, 2013, 200, 162-167.	0.3	1
142	Integrated Thick-Film P-i-p ⁺ Structures Based on Spinel Ceramics. Solid State Phenomena, 2013, 200, 156-161.	0.3	27
143	A SIMULATION OF THE CLUSTER STRUCTURES IN Ge-Se VITREOUS CHALCOGENIDE SEMICONDUCTORS. , 2013, , .		0
144	Gamma Radiation Effects on Physical, Optical, and Structural Properties of Binary <scp><scp>As–S</scp></scp> Glasses. Journal of the American Ceramic Society, 2012, 95, 1048-1055.	1.9	12

ОLЕН I SHРОТУИК

#	Article	IF	CITATIONS
145	Sintering-modified oxymanganospinel ceramics for NTC thermistor application. , 2012, , .		Ο
146	On the kinetics description of below-T <inf>g</inf> structural relaxation in network glass formers. , 2012, , .		0
147	Integrated thick-film p-i-p ⁺ structures based on spinel ceramics. , 2012, , .		1
148	Initial stage of physical ageing in network glasses. Philosophical Magazine, 2012, 92, 4182-4193.	0.7	11
149	Water-sorption processes in nanostructured ceramics for sensor electronics studied with positron annihilation instruments. , 2012, , .		7
150	On the application of chalcogenide glasses in temperature sensors. , 2012, , .		2
151	Step-wise kinetics of natural physical ageing in arsenic selenide glasses. Journal of Physics Condensed Matter, 2012, 24, 505106.	0.7	54
152	PAL signature of physical ageing in chalcogenide glasses. Physica Status Solidi (B): Basic Research, 2012, 249, 1017-1019.	0.7	9
153	Critical comments on speculations with open and closed "free-volume defects … in ion-conducting Ag/AgI-As2S3 glasses …― Solid State Ionics, 2012, 208, 1-3.	1.3	5
154	Compositional dependences of average positron lifetime in binary As–S/Se glasses. Physica B: Condensed Matter, 2012, 407, 652-655.	1.3	34
155	Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses. Journal of Physics: Conference Series, 2011, 289, 012009.	0.3	0
156	Structural studies of spinel manganite ceramics with positron annihilation lifetime spectroscopy. Journal of Physics: Conference Series, 2011, 289, 012010.	0.3	22
157	In search of energy landscape for network glasses. Applied Physics Letters, 2011, 98, .	1.5	21
158	Sintering-modified mixed Ni–Co–Cu oxymanganospinels for NTC electroceramics. Journal of Alloys and Compounds, 2011, 509, 447-450.	2.8	31
159	Post-irradiation relaxation in vitreous arsenic/antimony trisulphides. Journal of Non-Crystalline Solids, 2011, 357, 487-489.	1.5	14
160	Topological controversies in the adaptability concept for glassy germanium selenides. Journal of Non-Crystalline Solids, 2011, 357, 479-482.	1.5	5
161	Short-range order evolution in S-rich Ge–S glasses by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2011, 357, 1797-1803.	1.5	18
162	Topology and chemical order in As Ge Se1â^2 glasses: A high-resolution X-ray photoelectron spectroscopy study. Journal of Non-Crystalline Solids, 2011, 357, 3454-3460.	1.5	23

#	Article	IF	CITATIONS
163	On the structural-optical correlations in radiation-modified chalcogenide glasses. Journal of Physics: Conference Series, 2011, 289, 012007.	0.3	5
164	Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS. Semiconductors, 2011, 45, 423-426.	0.2	7
165	Radiation effects in physical aging of binary As–S and As–Se glasses. Journal of Thermal Analysis and Calorimetry, 2011, 103, 213-218.	2.0	23
166	Filament-induced self-written waveguides in glassy As4Ge30S66. Applied Physics B: Lasers and Optics, 2011, 104, 951-956.	1.1	16
167	Is the marginality of non-reversible heat flow in MDSC experiments a sufficient criterion for self-organization in network glass-formers?. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3043-3046.	0.8	3
168	A unified configuration oordinate model of structural metastability in amorphous chalcogenide glasses. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 3151-3154.	0.8	2
169	Pseudoâ€selfâ€organized topological phases in glassy selenides for IR photonics. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2572-2576.	0.8	13
170	Temperature-dependent structural relaxation in As40Se60 glass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3032-3036.	0.9	23
171	Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons. Journal of Materials Research, 2011, 26, 2420-2427.	1.2	24
172	Multifunctional thick-film structures based on spinel ceramics for environment sensors. Journal of Physics: Conference Series, 2011, 289, 012011.	0.3	29
173	Double-bond defect modelling in As-S glasses. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012074.	0.3	Ο
174	Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012056.	0.3	1
175	Interaction of femtosecond filaments in sapphire. Proceedings of SPIE, 2010, , .	0.8	2
176	Extended defects in insulating MgAl2O4ceramic materials studied by PALS methods. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012044.	0.3	5
177	Radiation-induced defects in As-Sb-S glass. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012054.	0.3	Ο
178	Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption. Optical Materials, 2010, 32, 1553-1557.	1.7	24
179	Cluster modeling of quasiâ€adaptive phases in vitreous germanium selenides. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 921-924.	0.8	5
180	Physical aging of chalcogenide glasses. Inorganic Materials, 2010, 46, 911-913.	0.2	21

#	Article	IF	CITATIONS
181	Filament-induced waveguides in As 4 Ge 30 S 66. , 2010, , .		Ο
182	Optical properties of Ge x As x Se 1-2x glasses. Proceedings of SPIE, 2010, , .	0.8	0
183	T/RH-sensitive thick-film structures for ecological control and environment monitoring. , 2010, , .		1
184	PALS as characterization tool in application to humidity-sensitive electroceramics. , 2010, , .		27
185	Optical signature of structural relaxation in glassy As10Se90. Journal of Non-Crystalline Solids, 2010, 356, 1149-1152.	1.5	19
186	Non-linear effects in chalcogenide glasses. , 2010, , .		0
187	Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS. Philosophical Magazine, 2010, 90, 4489-4501.	0.7	52
188	Transient light absorption induced in glassby femtosecond laser pulses. Quantum Electronics, 2009, 39, 933-937.	0.3	0
189	High-energy γ-irradiation effect on physical ageing in Ge–Se glasses. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2958-2961.	0.6	17
190	Long-term ageing behaviour in Ge–Se glasses. Journal of Materials Science, 2009, 44, 3962-3967.	1.7	29
191	Spatiotemporal dynamics of femtosecond filament induced plasma channel in fused silica. Applied Physics B: Lasers and Optics, 2009, 97, 829-834.	1.1	16
192	Extended freeâ€volume defects in chalcogenide glassy semiconductors induced by highâ€energy γâ€irradiation. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1892-1896.	0.8	0
193	Cationâ€interlinking network cluster approach in application to extended defects in covalentâ€bonded glassy semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1882-1885.	0.8	8
194	Manifestations of sub- and superluminality in filamented femtosecond laser pulse in fused silica. Optics Communications, 2009, 282, 1913-1917.	1.0	22
195	Structural study of (As2S3)0.6(GeS2)0.4 glass. Journal of Non-Crystalline Solids, 2009, 355, 1801-1806.	1.5	3
196	Structural paradigm of Se-rich Ge–Se glasses by high-resolution x-ray photoelectron spectroscopy. Journal of Applied Physics, 2009, 105, 103704.	1.1	42
197	Cooperative rearranging region size and free volume in As–Se glasses. Journal of Physics Condensed Matter, 2009, 21, 075105.	0.7	18
198	Plasma effect on propagation of filamented femtosecond laser pulse in fused silica. Ukrainian Journal of Physical Optics, 2009, 10, 100.	9.7	2

#	Article	IF	CITATIONS
199	Nanostructural Characterization Of Amorphous Chalcogenides By X-Ray Diffraction And Positron Annihilation Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 365-370.	0.2	1
200	Physical ageing in glassy As–Se induced by above-bandgap photoexposure. Solid State Communications, 2008, 145, 423-426.	0.9	29
201	Reversibility windows in selenide-based chalcogenide glasses. Physica B: Condensed Matter, 2008, 403, 3830-3837.	1.3	16
202	Long-term physical ageing in As–Se glasses with short chalcogen chains. Journal of Physics Condensed Matter, 2008, 20, 245101.	0.7	27
203	<title>Vibrational and structural properties of unmodified and radiation-modified chalcogenide glasses for advanced optical applications</title> . , 2008, , .		7
204	Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses. Journal of Chemical Physics, 2008, 128, 244514.	1.2	12
205	Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements. Physical Review B, 2008, 77, .	1.1	26
206	Experimental verification of the reversibility window concept in binary As-Se glasses subjected to a long-term physical aging. Physical Review B, 2008, 78, .	1.1	67
207	Physical ageing in the above-bandgap photoexposured glassy arsenic selenides. Journal of Physics: Conference Series, 2007, 79, 012016.	0.3	1
208	Atomistic model of physical ageing in Se-rich As–Se glasses. Philosophical Magazine, 2007, 87, 4323-4334.	0.7	60
209	Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy. Physical Review B, 2007, 76, .	1.1	81
210	Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics. Journal of Physics: Conference Series, 2007, 79, 012015.	0.3	26
211	On the reversibility window in binary As–Se glasses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 370, 504-508.	0.9	19
212	Radiation-induced physical ageing of the structure of an arsenic–selenide glass. Journal of Physics and Chemistry of Solids, 2007, 68, 901-905.	1.9	10
213	PAL spectroscopy as experimental probe for extended free-volume defects in inorganic glasses and ceramics. Journal of Physics and Chemistry of Solids, 2007, 68, 998-1002.	1.9	5
214	Void-species nanostructure of chalcogenide glasses studied with FSDP-related XRD. Journal of Physics and Chemistry of Solids, 2007, 68, 712-715.	1.9	14
215	On the instability effects in radiation-sensitive chalcogenide glasses. Radiation Measurements, 2007, 42, 941-943.	0.7	3
216	Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods. Radiation Measurements, 2007, 42, 712-714.	0.7	19

#	Article	IF	CITATIONS
217	Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 715-718.	0.8	34
218	Defect characterization methodology in sintered functional spinels with PALS technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1317-1320.	0.8	13
219	Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1147-1150.	0.8	1
220	A Study of Reversible Î ³ -Induced Structural Transformations in Vitreous Ge23.5Sb11.8S64.7by High-Resolution X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 22930-22934.	1.2	24
221	On the correlation between void-species structure of vitreous arsenic selenide studied with X-ray diffraction and positron annihilation techniques. Journal of Non-Crystalline Solids, 2006, 352, 700-703.	1.5	12
222	Physical aging effects in selenide glasses accelerated by highly energetic Î ³ -irradiation. Journal of Non-Crystalline Solids, 2006, 352, 704-708.	1.5	17
223	Bimolecular relaxation kinetics observed in radiation-optical properties of Ge–As(Sb)–S glasses. Journal of Non-Crystalline Solids, 2006, 352, 4809-4813.	1.5	13
224	Gamma-irradiation-induced physical ageing in As–Se glasses. Journal of Non-Crystalline Solids, 2006, 352, 4960-4963.	1.5	42
225	Physical ageing in vitreous As13.5Ge4.5Se82 modified by high-energy gamma-irradiation. Physica B: Condensed Matter, 2006, 371, 323-326.	1.3	10
226	Physical ageing effects in vitreous arsenic selenides. Solid State Communications, 2006, 137, 67-69.	0.9	44
227	Title is missing!. Ukrainian Journal of Physical Optics, 2006, 7, 18-23.	9.7	3
228	Photo-induced cooperative covalent-bond switching in amorphous arsenic selenide. Journal of Physics: Conference Series, 2005, 21, 81-86.	0.3	1
229	PAL spectroscopy in application to humidity-sensitive MgAl2O4 ceramics. Journal of the European Ceramic Society, 2005, 25, 2981-2984.	2.8	37
230	Threshold restoration effects in γ-irradiated chalcogenide glasses. Journal of Non-Crystalline Solids, 2005, 351, 993-997.	1.5	16
231	Nanovolume positron traps in glassy-like As2Se3. Journal of Non-Crystalline Solids, 2005, 351, 1077-1081.	1.5	9
232	Modified Positron Annihilation Model for Glassy-Like As2Se3. Acta Physica Polonica A, 2005, 107, 832-836.	0.2	1
233	Ageing behavior of electrical resistance in manganite NTC ceramics. Journal of the European Ceramic Society, 2004, 24, 1243-1246.	2.8	31
234	On the role of mass-transfer processes in ageing of manganite electroceramics. Journal of the European Ceramic Society, 2004, 24, 1277-1280.	2.8	3

#	Article	IF	CITATIONS
235	Chapter 6 Radiation-induced effects in chalcogenide vitreous semiconductors. Semiconductors and Semimetals, 2004, 78, 215-260.	0.4	21
236	A nanoscale characterisation of extended defects in glassy-like As2Se3 semiconductors with PAL technique. Physica B: Condensed Matter, 2003, 340-342, 960-964.	1.3	3
237	Coordination positron-trapping centers in vitreous chalcogenide semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 795-798.	0.8	0
238	<title>Phenomenological model of radiation-induced optical effects in
Sb<formula><inf><roman>2</roman></inf></formula>S<formula><inf><roman>3</roman></inf></formula>-G
chalcogenide glasses</title> ., 2003, , .	eS <formul< td=""><td>a>øinf><rom< td=""></rom<></td></formul<>	a>øinf> <rom< td=""></rom<>
239	Thick films of ceramic superconducting, electro-ceramic materials. Pure and Applied Chemistry, 2002, 74, 2083-2096.	0.9	20
240	Microstructure, crystal structure and electrical properties of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics obtained at different sintering conditions. Journal of Alloys and Compounds, 2002, 347, 14-23.	2.8	40
241	Radiation-induced defects in vitreous chalcogenide semiconductors studied by positron annihilation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 91-92, 537-540.	1.7	6
242	On the analytical description of ageing kinetics in ceramic manganite-based NTC thermistors. Microelectronics Reliability, 2002, 42, 2003-2007.	0.9	16
243	Title is missing!. Ukrainian Journal of Physical Optics, 2002, 3, 134-143.	9.7	5
244	Dynamic radiation-induced effects in chalcogenide vitreous compounds. Journal of Non-Crystalline Solids, 2001, 287, 216-221.	1.5	15
245	On the problem of relaxation for radiation-induced optical effects in some ternary chalcogenide glasses. Radiation Effects and Defects in Solids, 2001, 153, 211-219.	0.4	9
246	<title>Gamma irradiation effect on the optical properties of GexSb40-xS60 chalcogenide
glasses</title> . , 2001, , .		5
247	Thermoelectrical degradation processes in NTC thermistors for in-rush current protection of electronic circuits. Microelectronics Reliability, 2001, 41, 773-777.	0.9	31
248	Controlled thermistor effect in the system CuxNi1–x–yCo2yMn2–yO4. Journal of the European Ceramic Society, 2001, 21, 1783-1785.	2.8	95
249	Semiconductor ceramics for NTC thermistors: the reliability aspects. Journal of the European Ceramic Society, 2001, 21, 1787-1791.	2.8	24
250	Technological modification of spinel-based CuxNi1–x–yCo2yMn2–yO4 ceramics. Journal of the European Ceramic Society, 2001, 21, 2067-2070.	2.8	23
251	<title>IR optical properties of Sb2S3-GeS2(Ge2S3) chalcogenide glasses and effect of gamma irradiation</title> . , 2001, , .		1
252	IR impurity absorption in Sb2S3–GeS2(Ge2S3) chalcogenide glasses. Infrared Physics and Technology, 2000, 41, 41-45.	1.3	22

OLEH | SHPOTYUK

#	Article	IF	CITATIONS
253	Effect of gamma-irradiation on the optical properties of GexAs40â^'xS60 glasses. Physica B: Condensed Matter, 1999, 271, 242-247.	1.3	24
254	Sensors of high-energy radiation based on amorphous chalcogenides. Sensors and Actuators A: Physical, 1998, 68, 356-358.	2.0	13
255	<title>Photo- and radiation-induced coordination defects in amorphous chalcogenides</title> . , 1997, ,		5
256	Coordination Defects in Vitreous As2S3Induced by γ -irradiation. Acta Physica Polonica A, 1997, 92, 577-583.	0.2	10
257	Thermal modification of ceramic composites based on manganese-containing cube spinels. Journal of Physical Studies, 1996, 1, 90-93.	0.2	0
258	Radiation-induced changes of amorphous As ₂ S ₃ physical properties. Radiation Effects and Defects in Solids, 1995, 133, 1-4.	0.4	27
259	Mechanism of reversible photostructural transformations in amorphous arsenic selenide. Journal of Applied Spectroscopy, 1994, 61, 546-549.	0.3	0
260	Photostructural transformations in amorphous chalcogenide semiconductors. Physica Status Solidi (B): Basic Research, 1994, 183, 365-374.	0.7	49
261	Reversible Radiation Effects in Vitreous As2S3. II. Mechanism of Structural Transformations. Physica Status Solidi A, 1994, 145, 69-75.	1.7	30
262	Mechanism of radiation-structural transformations in amorphous As2S3. Radiation Effects and Defects in Solids, 1994, 132, 393-396.	0.4	20
263	Radiation-stimulated processes in vitreous arsenic trisulphide. Journal of Non-Crystalline Solids, 1994, 176, 45-50.	1.5	41
264	Mechanism of reversible radiation-induced structural transformations in chalcogenide vitreous semiconductors. Journal of Applied Spectroscopy, 1993, 59, 891-894.	0.3	3
265	Reversible photostructural transformations in thin films of arsenic trisulfide. Journal of Applied Spectroscopy, 1990, 52, 395-398.	0.3	3
266	Photoinduced defect formation in chalcogenide vitreous semiconductors. Journal of Applied Spectroscopy, 1989, 50, 310-313.	0.3	0
267	Mechanism of gamma-stimulated transformation in vitreous arsenic trisulfide. Journal of Applied Spectroscopy, 1989, 50, 313-317.	0.3	0
268	Spectroscopic investigations of induced processes in arsenic sulfide chalcogenide glasses. Journal of Non-Crystalline Solids, 1987, 90, 521-523.	1.5	5
269	Aging of copper-nickel-cobalt manganite NTC thermistors [Cu/sub 0.1/Ni/sub 0.8/Co/sub 0.2/Mn/sub 1.9/O/sub 4/]. , 0, , .		3
270	Thick-film NTC thermistors based on spinel-type semiconducting electroceramics. , 0, , .		2

#	Article	IF	CITATIONS
271	Positron Annihilation in IR Transmitting GeS ₂ -Ga ₂ S ₃ Glasses. Solid State Phenomena, 0, 230, 221-227.	0.3	4