
George Leftheriotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3570291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films, 2001, 384, 298-306.	1.8	169
2	Deposition and optical properties of optimised ZnS/Ag/ZnS thin films for energy saving applications. Thin Solid Films, 1997, 306, 92-99.	1.8	153
3	A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasiâ€Solid Photoelectrochromic Devices with Excellent Longâ€Term Stability under Real Outdoor Operating Conditions. Advanced Functional Materials, 2016, 26, 1127-1137.	14.9	109
4	Structural and electrochemical properties of opaque sol–gel deposited WO3 layers. Applied Surface Science, 2003, 218, 276-281.	6.1	102
5	Dependence of the estimated diffusion coefficient of LixWO3 films on the scan rate of cyclic voltammetry experiments. Solid State Ionics, 2007, 178, 259-263.	2.7	97
6	Fabrication of evacuated glazing at low temperature. Solar Energy, 1998, 63, 243-249.	6.1	86
7	Advanced electrochromic devices based on WO3 thin films. Electrochimica Acta, 2001, 46, 2145-2150.	5.2	85
8	Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. Journal of Materials Chemistry A, 2021, 9, 19687-19691.	10.3	53
9	Development of electrochromic evacuated advanced glazing. Energy and Buildings, 2006, 38, 1455-1467.	6.7	52
10	Photoelectrochromic devices with cobalt redox electrolytes. Materials Today Energy, 2020, 15, 100365.	4.7	50
11	Development of electrodeposited WO3 films with modified surface morphology and improved electrochromic properties. Solid State Ionics, 2008, 179, 2192-2197.	2.7	41
12	Study of WO3 films with textured surfaces for improved electrochromic performance. Solid State Ionics, 2001, 139, 135-144.	2.7	38
13	Substrate related structural, electronic and electrochemical properties of evaporated CeOx ion storage layers. Thin Solid Films, 2006, 514, 87-96.	1.8	38
14	Facile, substrate-scale growth of mono- and few-layer homogeneous MoS ₂ films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology, 2016, 27, 045404.	2.6	38
15	Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles. Materials, 2018, 11, 411.	2.9	38
16	Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics, 2013, 231, 30-36.	2.7	32
17	Effect of acidic additives on the structure and performance of TiO 2 films prepared by a commercial nanopowder for dye-sensitized solar cells. Renewable Energy, 2014, 72, 164-173.	8.9	32
18	Optical properties and stability of near-optimum WO3/Ag/WO3 multilayers for electrochromic applications. Solid State Ionics, 2015, 272, 30-38.	2.7	31

GEORGE LEFTHERIOTIS

#	Article	IF	CITATIONS
19	Integrated photo-chargeable electrochromic energy-storage devices. Electrochimica Acta, 2020, 345, 136235.	5.2	27
20	Novel photoelectrochromic devices incorporating carbon-based perovskite solar cells. Nano Energy, 2020, 77, 105243.	16.0	17
21	Performance and stability of "partly covered―photoelectrochromic devices for energy saving and power production. Solid State Ionics, 2015, 277, 11-22.	2.7	16
22	Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells. Journal of Electroanalytical Chemistry, 2019, 835, 86-95.	3.8	15
23	Organic dyes end-capped with perfluorophenyl anchors: Synthesis, electrochemical properties and assessment of sensitization capacity of titania photoanodes. Dyes and Pigments, 2018, 148, 167-179.	3.7	14
24	A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustainable Materials and Technologies, 2022, 31, e00372.	3.3	14
25	Electrochromic device modeling using an adaptive neuro-fuzzy inference system: A model-free approach. Energy and Buildings, 2016, 110, 182-194.	6.7	13
26	Lessons learned from 25 years of development of photoelectrochromic devices: A technical review. Renewable and Sustainable Energy Reviews, 2022, 162, 112462.	16.4	12
27	A simple method for the fabrication of WO3 films with electrochromic and photocatalytic properties. Thin Solid Films, 2014, 573, 6-13.	1.8	10
28	Electrochemical properties and long-term stability of molybdenum disulfide and platinum counter electrodes for solar cells: A comparative study. Electrochimica Acta, 2018, 267, 110-121.	5.2	10
29	Electrochromic phenomena in transition metal oxide thin films prepared by thermal evaporation. Ionics, 1998, 4, 321-329.	2.4	9
30	Double-Layered Zirconia Films for Carbon-Based Mesoscopic Perovskite Solar Cells and Photodetectors. Journal of Nanomaterials, 2019, 2019, 1-11.	2.7	8
31	Evaluation of the electronic properties of perfluorophenyl functionalized quinolines and their hybrids with carbon nanostructures. Physical Chemistry Chemical Physics, 2016, 18, 4154-4165.	2.8	7
32	Photoelectrochromic Devices with Enhanced Power Conversion Efficiency. Materials, 2020, 13, 2565.	2.9	6
33	Thermal properties of building materials evaluated by a dynamic simulation of a test cell. Solar Energy, 2000, 69, 295-304.	6.1	5
34	Design, fabrication, and testing of an electronic device for the automatic control of electrochromic windows. Journal of Building Engineering, 2017, 12, 248-258.	3.4	2
35	Development of a turbine to operate in the vortex field generated by a slender delta wing. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39, 417-425.	3.9	0