
C Marcelo Aldaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3570143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction of Wwox with Brca1 and associated complex proteins prevents premature resection at double-strand breaks and aberrant homologous recombination. DNA Repair, 2022, 110, 103264.	1.3	4
2	Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. International Journal of Molecular Sciences, 2022, 23, 3729.	1.8	2
3	MALINC1 an Immune-Related Long Non-Coding RNA Associated with Early-Stage Breast Cancer Progression. Cancers, 2022, 14, 2819.	1.7	2
4	Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 89-99.	1.4	5
5	Genomic Alterations during the <i>In Situ</i> to Invasive Ductal Breast Carcinoma Transition Shaped by the Immune System. Molecular Cancer Research, 2021, 19, 623-635.	1.5	24
6	HOTAIR Modulated Pathways in Early-Stage Breast Cancer Progression. Frontiers in Oncology, 2021, 11, 783211.	1.3	14
7	LINC00885 a Novel Oncogenic Long Non-Coding RNA Associated with Early Stage Breast Cancer Progression. International Journal of Molecular Sciences, 2020, 21, 7407.	1.8	16
8	WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 8922.	1.8	30
9	Abstract PO-059: The genomic landscape of the in situ to invasive ductal breast carcinoma transition shaped by the immune system. , 2020, , .		1
10	Wwox Deletion in Mouse B Cells Leads to Genomic Instability, Neoplastic Transformation, and Monoclonal Gammopathies. Frontiers in Oncology, 2019, 9, 517.	1.3	4
11	WWOX, the FRA16D gene: A target of and a contributor to genomic instability. Genes Chromosomes and Cancer, 2019, 58, 324-338.	1.5	28
12	Wwox deletion leads to reduced GABA-ergic inhibitory interneuron numbers and activation of microglia and astrocytes in mouse hippocampus. Neurobiology of Disease, 2019, 121, 163-176.	2.1	41
13	Genomic and Expression Analyses Identify a Disease-Modifying Variant for Fibrostenotic Crohn's Disease. Journal of Crohn's and Colitis, 2018, 12, 582-588.	0.6	16
14	Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Frontiers in Oncology, 2018, 8, 591.	1.3	28
15	Wwox–Brca1 interaction: role in DNA repair pathway choice. Oncogene, 2017, 36, 2215-2227.	2.6	50
16	DMBA induced mouse mammary tumors display high incidence of activating <i>Pik3caH1047</i> and loss of function <i>Pten</i> mutations. Oncotarget, 2016, 7, 64289-64299.	0.8	51
17	A Molecular Portrait of High-Grade Ductal Carcinoma <i>In Situ</i> . Cancer Research, 2015, 75, 3980-3990.	0.4	122
18	Karyotypic evolutions of cancer species in rats during the long latent periods after injection of nitrosourea. Molecular Cytogenetics, 2014, 7, 71.	0.4	11

#	Article	IF	CITATIONS
19	The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. Brain, 2014, 137, 411-419.	3.7	127
20	WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 188-200.	3.3	89
21	Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples. Clinical Epigenetics, 2014, 6, 13.	1.8	9
22	The <i>WWOX</i> Gene Modulates High-Density Lipoprotein and Lipid Metabolism. Circulation: Cardiovascular Genetics, 2014, 7, 491-504.	5.1	49
23	Identification of signaling pathways modulated by RHBDD2 in breast cancer cells: a link to the unfolded protein response. Cell Stress and Chaperones, 2014, 19, 379-388.	1.2	12
24	Abstract 2303: Decitabine impact on immunohistochemistry scores for tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in human tumor samples. , 2014, , .		0
25	The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding. BMC Cancer, 2013, 13, 593.	1.1	48
26	Bim, a Proapoptotic Protein, Up-regulated via Transcription Factor E2F1-dependent Mechanism, Functions as a Prosurvival Molecule in Cancer. Journal of Biological Chemistry, 2013, 288, 368-381.	1.6	68
27	Abstract 5183: Loss of WWOX induces ANGPTL4 and ROS production in breast cells , 2013, , .		3
28	Evidence that E2F1â€mediated upregulation of Bim, a proapoptotic BH3â€only protein, functions as a prosurvival molecule in cancer. FASEB Journal, 2013, 27, 834.1.	0.2	0
29	Conditional Wwox Deletion in Mouse Mammary Gland by Means of Two Cre Recombinase Approaches. PLoS ONE, 2012, 7, e36618.	1.1	44
30	Activation of the Canonical Wnt/β-Catenin Pathway in ATF3-Induced Mammary Tumors. PLoS ONE, 2011, 6, e16515.	1.1	50
31	Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocrine-Related Cancer, 2011, 18, 333-345.	1.6	256
32	Breast Cancer Biomarker Discovery in the Functional Genomic Age: A Systematic Review of 42 Gene Expression Signatures. Biomarker Insights, 2010, 5, BMI.S5740.	1.0	40
33	Generation and Characterization of Mice Carrying a Conditional Allele of the Wwox Tumor Suppressor Gene. PLoS ONE, 2009, 4, e7775.	1.1	82
34	Identification of Modulated Genes by Three Classes of Chemopreventive Agents at Preneoplastic Stages in a p53-Null Mouse Mammary Tumor Model. Cancer Prevention Research, 2009, 2, 175-184.	0.7	7
35	Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats. BMC Cancer, 2009, 9, 259.	1.1	35
36	Rhomboid domain containing 2 (RHBDD2): A novel cancer-related gene over-expressed in breast cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 988-997.	1.8	41

#	Article	IF	CITATIONS
37	Transcriptomic signature of Bexarotene (Rexinoid LGD1069) on mammary gland from three transgenic mouse mammary cancer models. BMC Medical Genomics, 2008, 1, 40.	0.7	12
38	CARM1 promotes adipocyte differentiation by coactivating PPARÎ ³ . EMBO Reports, 2008, 9, 193-198.	2.0	114
39	Low levels of WWOX protein immunoexpression correlate with tumour grade and a less favourable outcome in patients with urinary bladder tumours. Histopathology, 2008, 52, 831-839.	1.6	33
40	The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer, 2008, 8, 268.	1.1	53
41	Molecular alterations in the tumor suppressor gene WWOX in oral leukoplakias. Oral Oncology, 2008, 44, 753-758.	0.8	16
42	Association between Decreased WWOX Protein Expression and Thyroid Cancer Development. Thyroid, 2007, 17, 1055-1059.	2.4	22
43	Identification of Novel Amplification Gene Targets in Mouse and Human Breast Cancer at a Syntenic Cluster Mapping to Mouse ch8A1 and Human ch13q34. Cancer Research, 2007, 67, 4104-4112.	0.4	45
44	Breast Cancer Molecular Signatures as Determined by SAGE: Correlation with Lymph Node Status. Molecular Cancer Research, 2007, 5, 881-890.	1.5	99
45	CtIP Silencing as a Novel Mechanism of Tamoxifen Resistance in Breast Cancer. Molecular Cancer Research, 2007, 5, 1285-1295.	1.5	28
46	<i>WWOX</i> hypomorphic mice display a higher incidence of B ell lymphomas and develop testicular atrophy. Genes Chromosomes and Cancer, 2007, 46, 1129-1136.	1.5	67
47	Epidermal hyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3 in basal epithelial cells. Molecular Carcinogenesis, 2007, 46, 476-487.	1.3	29
48	GATA3 protein as a MUC1 transcriptional regulator in breast cancer cells. Breast Cancer Research, 2006, 8, R64.	2.2	28
49	WWOX protein expression in normal human tissues. Journal of Molecular Histology, 2006, 37, 115-125.	1.0	81
50	Characterization of the tumor suppressor gene WWOX in primary human oral squamous cell carcinomas. International Journal of Cancer, 2006, 118, 1154-1158.	2.3	39
51	P21-Activated Kinase 1 Regulation of Estrogen Receptor-α Activation Involves Serine 305 Activation Linked with Serine 118 Phosphorylation. Cancer Research, 2006, 66, 1694-1701.	0.4	121
52	WWOX, a Chromosomal Fragile Site Gene and its Role in Cancer. Advances in Experimental Medicine and Biology, 2006, 587, 149-159.	0.8	19
53	Quantitative high-throughput measurement of gene expression with sub-zeptomole sensitivity by capillary electrophoresis. Analytical Biochemistry, 2005, 345, 284-295.	1.1	1
54	Gene expression signature of estrogen receptor α status in breast cancer. BMC Genomics, 2005, 6, 37.	1.2	126

#	Article	IF	CITATIONS
55	WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome. BMC Cancer, 2005, 5, 64.	1.1	86
56	SAGE profiling of UV-induced mouse skin squamous cell carcinomas, comparison with acute UV irradiation effects. Molecular Carcinogenesis, 2005, 42, 40-52.	1.3	40
57	Expression of common chromosomal fragile site genes, WWOX/FRA16D and FHIT/FRA3B is downregulated by exposure to environmental carcinogens, UV, and BPDE but not by IR. Molecular Carcinogenesis, 2005, 44, 174-182.	1.3	40
58	Frequent loss of WWOX expression in breast cancer: correlation with estrogen receptor status. Breast Cancer Research and Treatment, 2005, 89, 99-105.	1.1	88
59	WWOX mRNA expression profile in epithelial ovarian cancer supports the role of WWOX variant 1 as a tumour suppressor, although the role of variant 4 remains unclear. International Journal of Oncology, 2005, 26, 1681-1689.	1.4	25
60	From Mice to Humans. Cancer Research, 2004, 64, 7748-7755.	0.4	77
61	WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene, 2004, 23, 5049-5055.	2.6	114
62	Frequent downregulation and loss of WWOX gene expression in human hepatocellular carcinoma. British Journal of Cancer, 2004, 91, 753-759.	2.9	81
63	Overdispersed logistic regression for SAGE: modelling multiple groups and covariates. BMC Bioinformatics, 2004, 5, 144.	1.2	47
64	Expression of sigma 1 receptor in human breast cancer. Breast Cancer Research and Treatment, 2004, 87, 205-214.	1.1	65
65	Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Research, 2004, 6, R499-513.	2.2	121
66	Karyotypic evolution of four novel mouse mammary carcinoma cell lines. Identification of marker chromosomes by fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 2003, 142, 36-45.	1.0	5
67	Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics, 2003, 19, 1477-1483.	1.8	299
68	Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis, 2003, 24, 945-952.	1.3	78
69	WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenetic and Genome Research, 2003, 100, 101-110.	0.6	82
70	Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways. Carcinogenesis, 2003, 24, 225-234.	1.3	57
71	Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6464-6468.	3.3	254
72	Ploidy differences between hormone- and chemical carcinogen-induced rat mammary neoplasms: Comparison to invasive human ductal breast cancer. Molecular Carcinogenesis, 2002, 33, 56-65.	1.3	58

#	Article	IF	CITATIONS
73	Serial analysis of gene expression in normal p53 null mammary epithelium. Oncogene, 2002, 21, 6366-6376.	2.6	28
74	The Molecular Basis of Breast Carcinogenesis. , 2002, , 347-363.		2
75	The fragile histidine triad/common chromosome fragile site 3B locus and repair-deficient cancers. Cancer Research, 2002, 62, 4054-60.	0.4	46
76	Serial Analysis of Gene Expression in Breast Cancer Cells. , 2001, , 113-123.		0
77	WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Research, 2001, 61, 8068-73.	0.4	230
78	WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Research, 2000, 60, 2140-5.	0.4	338
79	Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Research, 2000, 60, 5977-83.	0.4	201
80	Rapid analysis of gene expression (RAGE) facilitates universal expression profiling. Nucleic Acids Research, 1999, 27, 4609-4618.	6.5	38
81	Suppression of cell proliferation and telomerase activity in 4-(hydroxyphenyl)retinamide-treated mammary tumors. Carcinogenesis, 1999, 20, 879-883.	1.3	22
82	Assignment of the human P532 gene (HERC1) to chromosome 15q22 by fluorescence in situ hybridization. Cytogenetic and Genome Research, 1999, 86, 68-69.	0.6	9
83	Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene, 1998, 17, 199-205.	2.6	249
84	The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Molecular Carcinogenesis, 1998, 23, 175-184.	1.3	93
85	Constitutive telomerase activity in cells with tissue-renewing potential from estrogen-regulated rat tissues. Oncogene, 1998, 16, 381-385.	2.6	13
86	Alterations in the Ha-ras-1 and thep53 pathway genes in the progression ofN-methyl-N-nitrosourea–induced rat mammary tumors. Molecular Carcinogenesis, 1997, 20, 194-203.	1.3	7
87	Telomerase and cell proliferation in mouse skin papillomas. , 1997, 20, 329-331.		11
88	Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clinical Cancer Research, 1997, 3, 11-6.	3.2	133
89	Technical approach for the study of the genetic evolution of breast cancer from paraffin-embedded tissue sections. Breast Cancer Research and Treatment, 1996, 39, 177-185.	1.1	11
90	Midkine in the progression of ratN-nitroso-N-methylurea-induced mammary tumors. , 1996, 17, 112-116.		6

Midkine in the progression of ratN-nitroso-N-methylurea-induced mammary tumors. , 1996, 17, 112-116. 90

#	Article	IF	CITATIONS
91	Allelotypic and cytogenetic characterization of chemically induced mouse mammary tumors: High frequency of chromosome 4 loss of heterozygosity at advanced stages of progression. , 1996, 17, 126-133.		30
92	Medroxyprogesterone acetate accelerates the development and increases the incidence of mouse mammary tumors induced by dimethylbenzanthracene. Carcinogenesis, 1996, 17, 2069-2072.	1.3	82
93	CANCER BIOLOGY: Regression and progression characteristics of papillomas induced by chrysarobin in SENCAR mice. Carcinogenesis, 1996, 17, 955-960.	1.3	4
94	Cloning and chromosomal localization of the rat <i>Stat5</i> and Y <i>γ</i> 1 genes. Cytogenetic and Genome Research, 1996, 74, 277-280.	0.6	6
95	Deletion map of chromosome 16q in ductal carcinoma in situ of the breast: refining a putative tumor suppressor gene region. Cancer Research, 1996, 56, 5605-9.	0.4	78
96	Loss of heterozygosity at chromosome 1q loci in rat mammary tumors. Molecular Carcinogenesis, 1995, 12, 7-13.	1.3	23
97	Colocalization of the rat homolog of the von Hippel Lindau (Vhl) gene and the plasma membrane Ca ⁺⁺ transporting ATPase isoform 2 (<i>Atp2b2</i>) gene to rat chromosome bands 4q41.3→42.1. Cytogenetic and Genome Research, 1995, 71, 253-256.	0.6	5
98	Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability Genes and Development, 1995, 9, 882-895.	2.7	246
99	Involvement of the polyamine pathway in breast cancer progression. Cancer Letters, 1995, 92, 49-57.	3.2	61
100	Increased telomerase activity in mouse skin premalignant progression. Cancer Research, 1995, 55, 4566-9.	0.4	58
101	Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Research, 1995, 55, 3976-81.	0.4	107
102	Chromosome 9p allelic loss and p16/CDKN2 in breast cancer and evidence of p16 inactivation in immortal breast epithelial cells. Cancer Research, 1995, 55, 2892-5.	0.4	78
103	Defining the Steps in a Multistep Mouse Model for Mammary Carcinogenesis. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 491-499.	2.0	7
104	Strategies for the application of biomarkers for risk assessment and efficacy in breast cancer chemoprevention trials. Journal of Cellular Biochemistry, 1993, 53, 37-43.	1.2	7
105	Further studies on the influence of initiation dose on papilloma growth and progression during two-stage carcinogenesis in SENCAR mice. Carcinogenesis, 1993, 14, 1831-1836.	1.3	15
106	Systematic HRAS amplification in ovary-independent mammary tumors: correlation with progressively anaplastic phenotypes. Cancer Research, 1993, 53, 5339-44.	0.4	7
107	Chromosomal localization of the rat Harvey-ras-l gene (HRAS) by in situ hybridization. Cytogenetic and Genome Research, 1992, 61, 123-124.	0.6	9
108	Nonrandom abnormalities involving chromosome 1 and Harvey-ras-1 alleles in rat mammary tumor progression. Cancer Research, 1992, 52, 4791-8.	0.4	24

#	Article	IF	CITATIONS
109	Chromosome alterations in rat mammary tumor progression. Progress in Clinical and Biological Research, 1992, 376, 137-53.	0.2	6
110	Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7590-7594.	3.3	39
111	Skin and Oral Mucosa. , 1991, , 165-193.		2
112	Nonrandom duplication of the chromosome bearing a mutated Ha-ras-1 allele in mouse skin tumors Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6902-6906.	3.3	93
113	Early expression of type I K13 keratin in the progression of mouse skin papillomas. Carcinogenesis, 1990, 11, 1995-1999.	1.3	50
114	Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Molecular Carcinogenesis, 1989, 2, 22-26.	1.3	81
115	Polyacrylamide gel electrophoresis and immunoblotting of proteins extracted from paraffin-embedded tissue sections Journal of Histochemistry and Cytochemistry, 1988, 36, 547-550.	1.3	36
116	Cytogenetic profile of mouse skin tumors induced by the viral Harvey-ras gene. Carcinogenesis, 1988, 9, 1503-1505.	1.3	16
117	Sequential development of aneuploidy, keratin modifications, and gamma-glutamyltransferase expression in mouse skin papillomas. Cancer Research, 1988, 48, 3253-7.	0.4	44
118	Progressive dysplasia and aneuploidy are hallmarks of mouse skin papillomas: relevance to malignancy Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2029-2032.	3.3	108
119	Terminal differentiation-resistant epidermal cells in mice undergoing two-stage carcinogenesis. Cancer Research, 1987, 47, 1935-40.	0.4	30
120	A direct cytogenetic technique for mouse skin carcinomas and papillomas. Cancer Genetics and Cytogenetics, 1986, 20, 223-229.	1.0	12
121	Effects of chronic topical application of 12-O-tetradecanoylphorbol-13-acetate on the skin and internal organs of SENCAR mice Environmental Health Perspectives, 1986, 68, 75-80.	2.8	15
122	Allogeneic transplantation of normal epidermal cells and squamous cell carcinomas in SENCAR mice Environmental Health Perspectives, 1986, 68, 125-129.	2.8	2
123	Aneuploidy, an early event in mouse skin tumor development. Carcinogenesis, 1986, 7, 1845-1848.	1.3	89
124	Cytogenetic evidence for gene amplification in mouse skin carcinogenesis. Cancer Research, 1986, 46, 3565-8.	0.4	10
125	A Simple Procedure for Autoradiography of Keratinocyte Cultures. Biotechnic & Histochemistry, 1982, 57, 355-357.	0.4	0