
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3569934/publications.pdf Version: 2024-02-01

Номеницио

#	Article	IF	CITATIONS
1	Ultrathin, Strong, and Highly Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding. ACS Nano, 2021, 15, 8439-8449.	7.3	178
2	Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chemical Engineering Journal, 2018, 334, 1148-1158.	6.6	127
3	Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics, 2017, 17, 249-254.	1.1	126
4	Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. Journal of Power Sources, 2015, 294, 414-419.	4.0	114
5	Oneâ€5tep In Situ Biosynthesis of Graphene Oxide–Bacterial Cellulose Nanocomposite Hydrogels. Macromolecular Rapid Communications, 2014, 35, 1706-1711.	2.0	110
6	Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. Journal of Porous Materials, 2011, 18, 139-145.	1.3	107
7	Application of Polyaniline for Li″on Batteries, Lithium–Sulfur Batteries, and Supercapacitors. ChemSusChem, 2019, 12, 1591-1611.	3.6	101
8	Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. Journal of Magnetism and Magnetic Materials, 2016, 399, 252-259.	1.0	98
9	A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe ₃ O ₄ for high-performance flexible and binder-free lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 15386-15393.	5.2	91
10	Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose. Composites Part B: Engineering, 2020, 199, 108259.	5.9	86
11	Uniformly Dispersed Freestanding Carbon Nanofiber/Graphene Electrodes Made by a Scalable Biological Method for Highâ€Performance Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1803075.	7.8	83
12	Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Materials Chemistry and Physics, 2013, 143, 373-379.	2.0	78
13	Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties. Nano-Micro Letters, 2018, 10, 42.	14.4	78
14	Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Current Applied Physics, 2016, 16, 830-836.	1.1	77
15	The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films. Applied Surface Science, 2011, 257, 10808-10814.	3.1	72
16	Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Materials Express, 2014, 4, 429-434.	0.2	69
17	Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route. Materials and Design, 2016, 99, 521-527.	3.3	63
18	A novel three-dimensional graphene/bacterial cellulose nanocomposite prepared by in situ biosynthesis. RSC Advances, 2014, 4, 14369-14372.	1.7	56

#	Article	IF	CITATIONS
19	Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surface and Coatings Technology, 2011, 205, 2938-2946.	2.2	55
20	Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 103-113.	1.5	54
21	Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polymers for Advanced Technologies, 2011, 22, 2643-2648.	1.6	53
22	Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon, 2018, 139, 824-832.	5.4	53
23	Novel porous graphene oxide and hydroxyapatite nanosheets-reinforced sodium alginate hybrid nanocomposites for medical applications. Materials Characterization, 2015, 107, 419-425.	1.9	51
24	Facile and scalable production of three-dimensional spherical carbonized bacterial cellulose/graphene nanocomposites with a honeycomb-like surface pattern as potential superior absorbents. Journal of Materials Chemistry A, 2015, 3, 24389-24396.	5.2	51
25	Mechanical properties and cytotoxicity of nanoplate-like hydroxyapatite/polylactide nanocomposites prepared by intercalation technique. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 29-37.	1.5	48
26	Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma. Cellulose, 2020, 27, 2775-2784.	2.4	48
27	Low adhesion superhydrophobic AZ31B magnesium alloy surface with corrosion resistant and anti-bioadhesion properties. Applied Surface Science, 2020, 505, 144566.	3.1	43
28	Nitrogen-doped graphene enwrapped silicon nanoparticles with nitrogen-doped carbon shell: a novel nanocomposite for lithium-ion batteries. Electrochimica Acta, 2016, 192, 22-29.	2.6	42
29	Exploring excellent dispersion of graphene nanosheets in three-dimensional bacterial cellulose for ultra-strong nanocomposite hydrogels. Composites Part A: Applied Science and Manufacturing, 2018, 109, 290-297.	3.8	42
30	The inhibition of lamellar hydroxyapatite and lamellar magnetic hydroxyapatite on the migration and adhesion of breast cancer cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 1025-1031.	1.7	38
31	Simultaneously depositing polyaniline onto bacterial cellulose nanofibers and graphene nanosheets toward electrically conductive nanocomposites. Current Applied Physics, 2018, 18, 933-940.	1.1	38
32	Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture. Carbohydrate Polymers, 2014, 114, 553-557.	5.1	36
33	Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid. Polymer Composites, 2016, 37, 3499-3507.	2.3	35
34	Preparation of SnO2-coated carbonyl iron flaky composites with enhanced microwave absorption properties. Materials Letters, 2013, 92, 139-142.	1.3	34
35	Conductive Polypyrrole Coated Hollow NiCo ₂ O ₄ Microspheres as Anode Material with Improved Pseudocapacitive Contribution and Enhanced Conductivity for Lithiumâ€ion Batteries. ChemElectroChem, 2019, 6, 690-699.	1.7	34
36	Synthesis and characterization of laminated hydroxyapatite/chitosan nanocomposites. Materials Letters, 2010, 64, 2126-2128.	1.3	33

#	Article	IF	CITATIONS
37	Enhanced biological behavior of bacterial cellulose scaffold by creation of macropores and surface immobilization of collagen. Macromolecular Research, 2015, 23, 734-740.	1.0	33
38	Layered nanohydroxyapatite as a novel nanocarrier for controlled delivery of 5-fluorouracil. International Journal of Pharmaceutics, 2016, 513, 17-25.	2.6	33
39	Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydrate Polymers, 2014, 111, 722-728.	5.1	32
40	Effect of highly dispersed graphene and graphene oxide in 3D nanofibrous bacterial cellulose scaffold on cell responses: A comparative study. Materials Chemistry and Physics, 2019, 235, 121774.	2.0	30
41	Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and flow resistance. Materials Science and Engineering C, 2020, 111, 110847.	3.8	30
42	Constructing a novel three-dimensional scaffold with mesoporous TiO ₂ nanotubes for potential bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 5595-5602.	2.9	29
43	Controlled template synthesis of lamellar hydroxyapatite nanoplates as a potential carrier for gene delivery. Materials Chemistry and Physics, 2015, 156, 238-246.	2.0	28
44	Constructing three-dimensional nanofibrous bioglass/gelatin nanocomposite scaffold for enhanced mechanical and biological performance. Chemical Engineering Journal, 2017, 326, 210-221.	6.6	27
45	Constructing a highly bioactive 3D nanofibrous bioglass scaffold via bacterial cellulose-templated sol-gel approach. Materials Chemistry and Physics, 2016, 176, 1-5.	2.0	25
46	Surface controlled calcium phosphate formation on three-dimensional bacterial cellulose-based nanofibers. Materials Science and Engineering C, 2015, 49, 526-533.	3.8	24
47	Incorporation of hydroxyapatite into nanofibrous PLGA scaffold towards improved breast cancer cell behavior. Materials Chemistry and Physics, 2019, 226, 177-183.	2.0	23
48	Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair. Carbohydrate Polymers, 2022, 276, 118790.	5.1	23
49	Sacrificial template method for the synthesis of three-dimensional nanofibrous 58S bioglass scaffold and its inÂvitro bioactivity and cell responses. Journal of Biomaterials Applications, 2017, 32, 265-275.	1.2	22
50	Encapsulating doxorubicin-intercalated lamellar nanohydroxyapatite into PLGA nanofibers for sustained drug release. Current Applied Physics, 2019, 19, 1204-1210.	1.1	22
51	Incorporating nanoplate-like hydroxyapatite into polylactide for biomimetic nanocomposites via direct melt intercalation. Composites Science and Technology, 2020, 185, 107903.	3.8	22
52	Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. Journal of Materials Chemistry B, 2020, 8, 5694-5706.	2.9	22
53	Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. Materials Science and Engineering C, 2021, 123, 111967.	3.8	22
54	Immobilization of lecithin on bacterial cellulose nanofibers for improved biological functions. Reactive and Functional Polymers, 2015, 91-92, 100-107.	2.0	18

#	Article	IF	CITATIONS
55	One-step exfoliation and surface modification of lamellar hydroxyapatite by intercalation of glucosamine. Materials Chemistry and Physics, 2016, 173, 262-267.	2.0	18
56	Engineering photoluminescent and magnetic lamellar hydroxyapatite by facile one-step Se/Gd dual-doping. Journal of Materials Chemistry B, 2018, 6, 3515-3521.	2.9	18
57	Preparation and properties of a novel porous poly(lactic acid) composite reinforced with bacterial cellulose nanowhiskers. Fibers and Polymers, 2014, 15, 2591-2596.	1.1	17
58	Porous nanoplate-like hydroxyapatite–sodium alginate nanocomposite scaffolds for potential bone tissue engineering. Materials Technology, 2017, 32, 78-84.	1.5	17
59	Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Materials Science and Engineering C, 2020, 108, 110416.	3.8	17
60	One-pot synthesis of copper-doped mesoporous bioglass towards multifunctional 3D nanofibrous scaffolds for bone regeneration. Journal of Non-Crystalline Solids, 2020, 532, 119856.	1.5	17
61	Bacterial cellulose-templated synthesis of free-standing silica nanotubes with a three-dimensional network structure. RSC Advances, 2015, 5, 48875-48880.	1.7	15
62	Directional fluid induced self-assembly of oriented bacterial cellulose nanofibers for potential biomimetic tissue engineering scaffolds. Materials Chemistry and Physics, 2015, 149-150, 7-11.	2.0	15
63	Submicrofiberâ€Incorporated 3D Bacterial Cellulose Nanofibrous Scaffolds with Enhanced Cell Performance. Macromolecular Materials and Engineering, 2018, 303, 1800316.	1.7	15
64	Fabrication of a novel hierarchical fibrous scaffold for breast cancer cell culture. Polymer Testing, 2019, 80, 106107.	2.3	15
65	Enhancement of mechanical and biological properties of calcium phosphate bone cement by incorporating bacterial cellulose. Materials Technology, 2019, 34, 800-806.	1.5	15
66	Manipulating thermal conductivity of polyimide composites by hybridizing micro- and nano-sized aluminum nitride for potential aerospace usage. Journal of Thermoplastic Composite Materials, 2020, 33, 1017-1029.	2.6	15
67	Fabrication of Robust, Shape Recoverable, Macroporous Bacterial Cellulose Scaffolds for Cartilage Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100167.	2.1	15
68	Synthesis of intercalated lamellar hydroxyapatite/gelatin nanocomposite for bone substitute application. Journal of Applied Polymer Science, 2009, 113, 3089-3094.	1.3	14
69	Preparation and characterization of nanoâ€plateletâ€like hydroxyapatite/gelatin nanocomposites. Polymers for Advanced Technologies, 2011, 22, 2659-2664.	1.6	14
70	Preparation, structural characterization, and in vitro cell studies of three-dimensional SiO2–CaO binary glass scaffolds built ofultra-small nanofibers. Materials Science and Engineering C, 2017, 76, 94-101.	3.8	14
71	Wrapping mesoporous Fe2O3 nanoparticles by reduced graphene oxide: Enhancement of cycling stability and capacity of lithium ion batteries by mesoscopic engineering. Ceramics International, 2018, 44, 20656-20663.	2.3	14
72	Enwrapping Polydopamine on Doxorubicin-Loaded Lamellar Hydroxyapatite/Poly(lactic- <i>co</i> -glycolic acid) Composite Fibers for Inhibiting Bone Tumor Recurrence and Enhancing Bone Regeneration. ACS Applied Bio Materials, 2021, 4, 6036-6045.	2.3	13

#	Article	IF	CITATIONS
73	Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding. Journal of Materials Chemistry A, 2022, 10, 960-968.	5.2	13
74	Magnetic lamellar nanohydroxyapatite as a novel nanocarrier for controlled delivery of 5-fluorouracil. Ceramics International, 2017, 43, 4957-4964.	2.3	12
75	Incorporating graphene oxide into biomimetic nano-microfibrous cellulose scaffolds for enhanced breast cancer cell behavior. Cellulose, 2020, 27, 4471-4485.	2.4	12
76	Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. Materials Science and Engineering C, 2021, 122, 111861.	3.8	12
77	Preparation and Characterization of Ti-10Mo Alloy by Mechanical Alloying. Metallography, Microstructure, and Analysis, 2012, 1, 282-289.	0.5	11
78	Preparation of oriented bacterial cellulose nanofibers by flowing medium-assisted biosynthesis and influence of flowing velocity. Journal of Polymer Engineering, 2018, 38, 299-305.	0.6	11
79	An Efficient Route for the Synthesis of Aluminum Nitride/Graphene Nanohybrids. Journal of the American Ceramic Society, 2014, 97, 1966-1970.	1.9	10
80	Effect of Graphene Oxide Incorporation into Electrospun Cellulose Acetate Scaffolds on Breast Cancer Cell Culture. Fibers and Polymers, 2019, 20, 1577-1585.	1.1	10
81	Constructing 3D scaffold with 40-nm-diameter hollow mesoporous bioactive glass nanofibers. Materials Letters, 2019, 248, 201-203.	1.3	9
82	Applications of Pyrolytic Polyaniline for Renewable Energy Storage. ChemElectroChem, 2018, 5, 3597-3606.	1.7	8
83	Improved Removal of Toxic Metal Ions by Incorporating Graphene Oxide into Bacterial Cellulose. Journal of Nanoscience and Nanotechnology, 2020, 20, 719-730.	0.9	8
84	Engineering bacteria for high-performance three-dimensional carbon nanofiber aerogel. Carbon, 2021, 183, 267-276.	5.4	8
85	Effect of Si content on structure and electrochemical performance of ternary nanohybrids integrating Si nanoparticles, N-doped carbon shell, and nitrogen-doped graphene. RSC Advances, 2017, 7, 4209-4215.	1.7	7
86	Morphology and cell responses of three-dimensional porous silica nanofibrous scaffold prepared by sacrificial template method. Journal of Non-Crystalline Solids, 2017, 457, 145-151.	1.5	7
87	Incorporation of dual nanoplatelets to a natural polymer for foldable, robust, bioactive, and biocompatible nacre-like nanocomposites. Composites Part B: Engineering, 2021, 214, 108747.	5.9	7
88	Self-assembled magnetic lamellar hydroxyapatite as an efficient nano-vector for gene delivery. Current Applied Physics, 2015, 15, 811-818.	1.1	6
89	Effect of Sisal Fibre Hybridisation on Static and Dynamic Mechanical Properties of Corn/Sisal/Polylactide Composites. Polymers and Polymer Composites, 2017, 25, 463-470.	1.0	6
90	Magnetic Lamellar Nano-Hydroxyapatite as a Vector for Gene Transfection in Three-Dimensional Cell Culture. Journal of Nanoscience and Nanotechnology, 2018, 18, 5314-5319.	0.9	6

#	Article	IF	CITATIONS
91	Improved properties of corn fiber-reinforced polylactide composites by incorporating silica nanoparticles at interfaces. Polymers and Polymer Composites, 2020, 28, 170-179.	1.0	6
92	Fabrication of a gradient hydrophobic surface with parallel ridges on pyrolytic carbon for artificial heart valves. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111894.	2.5	6
93	Three-dimensional braided fabrics-reinforced composites for load-bearing orthopedic applications Part I: mechanical performance. International Journal of Materials Research, 2011, 102, 309-316.	0.1	5
94	Chemisorption of polysulfides by keto groups modified Li4Ti5O12 nanofibers with 3D interwove network structure for LSBs. Chemical Engineering Journal, 2022, 429, 132202.	6.6	5
95	Synthesis of ZnO by Chemical Bath Deposition in the Presence of Bacterial Cellulose. Acta Metallurgica Sinica (English Letters), 2014, 27, 656-662.	1.5	4
96	Microchannels in nano-submicro-fibrous cellulose scaffolds favor cell ingrowth. Cellulose, 2021, 28, 9645-9659.	2.4	4
97	Hemodynamic evaluation of different stent graft schemes in aortic arch covered stent implantation. Medicine in Novel Technology and Devices, 2022, 13, 100108.	0.9	2