Takeshi Miki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3569917/publications.pdf Version: 2024-02-01

TAKESHI MIKI

#	Article	IF	CITATIONS
1	Mycoloop: chytrids in aquatic food webs. Frontiers in Microbiology, 2014, 5, 166.	1.5	235
2	Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environmental Microbiology, 2017, 19, 3802-3822.	1.8	171
3	Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14251-14256.	3.3	130
4	Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems. Science of the Total Environment, 2018, 635, 1152-1159.	3.9	121
5	Differing Growth Responses of Major Phylogenetic Groups of Marine Bacteria to Natural Phytoplankton Blooms in the Western North Pacific Ocean. Applied and Environmental Microbiology, 2011, 77, 4055-4065.	1.4	117
6	Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132498.	1.2	99
7	The soil microbial community predicts the importance of plant traits in plant–soil feedback. New Phytologist, 2015, 206, 329-341.	3.5	99
8	Viral control of bacterial growth efficiency in marine pelagic environments. Limnology and Oceanography, 2009, 54, 1901-1910.	1.6	74
9	Linkages among traitâ€mediated indirect effects: a new framework for the indirect interaction web. Population Ecology, 2010, 52, 485-497.	0.7	70
10	Complex interactions in the microbial world: underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquatic Microbial Ecology, 2008, 51, 195-208.	0.9	70
11	Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography and Limnology, 2010, 1, 97.	0.2	68
12	Microbeâ€mediated plant–soil feedback and its roles in a changing world. Ecological Research, 2012, 27, 509-520.	0.7	54
13	Flood initiates bottom-up cascades in a tri-trophic system: host plant regrowth increases densities of a leaf beetle and its predators. Journal of Animal Ecology, 2005, 74, 683-691.	1.3	47
14	Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion. Ecology Letters, 2002, 5, 624-633.	3.0	45
15	Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography and Limnology, 2010, 1, 97-141.	0.2	45
16	Intraguild predation reduces bacterial species richness and loosens the viral loop in aquatic systems: 'kill the killer of the winner' hypothesis. Aquatic Microbial Ecology, 2005, 40, 1-12.	0.9	39
17	Roles of parasitic fungi in aquatic food webs: a theoretical approach. Freshwater Biology, 2011, 56, 1173-1183.	1.2	37
18	Linking secondary structure of individual size distribution with nonlinear size–trophic level relationship in food webs. Ecology, 2014, 95, 897-909.	1.5	33

Такезні Мікі

#	Article	IF	CITATIONS
19	Functional consequences of viral impacts on bacterial communities: a foodâ€web model analysis. Freshwater Biology, 2008, 53, 1142-1153.	1.2	31
20	Reconstructing large interaction networks from empirical time series data. Ecology Letters, 2021, 24, 2763-2774.	3.0	30
21	Incorporating the soil environment and microbial community into plant competition theory. Frontiers in Microbiology, 2015, 6, 1066.	1.5	26
22	Intraguild predation promotes complex alternative states along a productivity gradient. Theoretical Population Biology, 2007, 72, 264-273.	0.5	24
23	Effect of interannual variation in winter vertical mixing on CH ₄ dynamics in a subtropical reservoir. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1246-1261.	1.3	24
24	Statistical recipe for quantifying microbial functional diversity from EcoPlate metabolic profiling. Ecological Research, 2018, 33, 249-260.	0.7	24
25	A Coexisting Fungal-Bacterial Community Stabilizes Soil Decomposition Activity in a Microcosm Experiment. PLoS ONE, 2013, 8, e80320.	1.1	23
26	Longâ€ŧerm warming destabilizes aquatic ecosystems through weakening biodiversityâ€nediated causal networks. Global Change Biology, 2020, 26, 6413-6423.	4.2	23
27	The role of food availability and phytoplankton community dynamics in the seasonal succession of zooplankton community in a subtropical reservoir. Limnologica, 2014, 46, 131-138.	0.7	20
28	The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts. Ecology, 2020, 101, e02900.	1.5	20
29	Causal networks of phytoplankton diversity and biomass are modulated by environmental context. Nature Communications, 2022, 13, 1140.	5.8	18
30	Influence of predator-specific defense adaptation on intraguild predation. Oikos, 2010, 119, 418-427.	1.2	17
31	Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees - Structure and Function, 2016, 30, 1749-1759.	0.9	17
32	Phytoplankton functional group dynamics explain species abundance distribution in a directionally changing environment. Ecology, 2014, 95, 3335-3343.	1.5	16
33	Intraspecific niche flexibility facilitates species coexistence in a competitive community with a fluctuating environment. Oikos, 2009, 118, 55-66.	1.2	14
34	Phenolic Control of Plant Nitrogen Acquisition through the Inhibition of Soil Microbial Decomposition Processes: A Plant-Microbe Competition Model. Microbes and Environments, 2009, 24, 180-187.	0.7	14
35	Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: a metacommunity model. Marine Ecology - Progress Series, 2008, 366, 1-14.	0.9	14
36	Coâ€evolution of foraging behaviour in herbivores and their natural enemies predicts multifunctionality of herbivoreâ€induced plant volatiles. Functional Ecology, 2015, 29, 451-461.	1.7	13

Такезні Мікі

#	Article	IF	CITATIONS
37	Indirect interactions in the microbial world: specificities and similarities to plant–insect systems. Population Ecology, 2010, 52, 475-483.	0.7	12
38	Using food network unfolding to evaluate food–web complexity in terms of biodiversity: theory and applications. Ecology Letters, 2018, 21, 1065-1074.	3.0	12
39	Interactive Effects of Viral and Bacterial Production on Marine Bacterial Diversity. PLoS ONE, 2013, 8, e76800.	1.1	11
40	Active populations of rare microbes in oceanic environments as revealed by bromodeoxyuridine incorporation and 454 tag sequencing. Gene, 2016, 576, 650-656.	1.0	11
41	Integrating isotopic, microbial, and modeling approaches to understand methane dynamics in a frequently disturbed deep reservoir in Taiwan. Ecological Research, 2017, 32, 861-871.	0.7	11
42	Leaf phenological shifts and plant–microbe–soil interactions can determine forest productivity and nutrient cycling under climate change in an ecosystem model. Ecological Research, 2016, 31, 263-274.	0.7	10
43	Filling the gaps in ecological studies of socioecological systems. Ecological Research, 2017, 32, 873-885.	0.7	9
44	Infections of Wolbachia may destabilize mosquito population dynamics. Journal of Theoretical Biology, 2017, 428, 98-105.	0.8	8
45	A new graphical model for untangling complex relationships among environment, biodiversity, and ecosystem functioning. Ecological Research, 2009, 24, 937-941.	0.7	7
46	Ecosystem engineering structures facilitate ecological resilience: A coral reef model. Ecological Research, 2021, 36, 673-685.	0.7	7
47	Difference Inadaptive Dispersal Ability Can Promote Species Coexistence in Fluctuating Environments. PLoS ONE, 2013, 8, e55218.	1.1	7
48	Theoretical model of interactions between particle-associated and free-living bacteria to predict functional composition and succession in bacterial communities. Aquatic Microbial Ecology, 2005, 39, 35-46.	0.9	7
49	Species coexistence under resource competition with intraspecific and interspecific direct competition in a chemostat. Theoretical Population Biology, 2010, 78, 173-182.	0.5	6
50	Effective dispersal rate is a function of habitat size and corridor shape: mechanistic formulation of a twoâ€patch compartment model for spatially continuous systems. Oikos, 2011, 120, 1712-1720.	1.2	6
51	Progress in the 21st century: a Roadmap for the <i>Ecological Society of Japan</i> . Ecological Research, 2014, 29, 357-368.	0.7	6
52	Summer profundal hypoxia determines the coupling of methanotrophic production and the pelagic food web in a subtropical reservoir. Freshwater Biology, 2016, 61, 1694-1706.	1.2	6
53	Growth Rate-dependent Cell Death of Diatoms due to Viral Infection and Their Subsequent Coexistence in a Semi-continuous Culture System. Microbes and Environments, 2021, 36, n/a.	0.7	6
54	Long-term dynamics of catabolic plasmids introduced to a microbial community in a polluted environment: a mathematical model. FEMS Microbiology Ecology, 2007, 62, 211-221.	1.3	5

Τακές ΗΙ Μικι

#	Article	IF	CITATIONS
55	Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. Theoretical Ecology, 2009, 2, 199-216.	0.4	5
56	Effects of increasing nutrient supply and omnivorous feeding on the size spectrum slope: a sizeâ€based nutrientâ€phytoplanktonâ€zooplankton model. Population Ecology, 2013, 55, 247-259.	0.7	4
57	Nuclear and mitochondrial ribosomal ratio as an index of animal growth rate. Limnology and Oceanography: Methods, 2019, 17, 575-584.	1.0	4
58	New index of functional specificity to predict the redundancy of ecosystem functions in microbial communities. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
59	Consumers can enhance ecosystem productivity and stability in changing environments. Population Ecology, 2012, 54, 177-186.	0.7	2
60	Promoting the sharing of ideas via "Idea Papers― Ecological Research, 2020, 35, 575-578.	0.7	2
61	Potential Factors Canceling Interannual Cycles of Shoot Production in a Moso Bamboo (Phyllostachys pubescens) Stand. Frontiers in Forests and Global Change, 0, 5, .	1.0	2
62	Establishment of an ecological research network involving Taiwan and Japan: developing a better understanding of ecological phenomena unique to East Asia. Ecological Research, 2017, 32, 779-781.	0.7	1
63	Mathematical Modeling on Microbes and Their Roles in Community and Ecosystem: How to Handle Microbial Diversity in Modeling?. Theoretical Biology, 2020, , 109-157.	0.0	1
64	Effects of asynchronous fluctuations in DOC supply and bacterial growth on biodegradation efficiency. Ecological Modelling, 2005, 183, 281-299.	1.2	0
65	Regime shift in a phytoplankton–phosphorus model with vertical structure and seasonality. Tamkang Journal of Mathematics, 2016, 47,	0.3	0
66	Preface: "ldea Paper―for sharing diverse research ideas. Ecological Research, 2022, 37, 450-454.	0.7	0