
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3569699/publications.pdf Version: 2024-02-01

IEDNEI IIIE

#	Article	IF	CITATIONS
1	HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature, 2008, 456, 464-469.	13.7	1,245
2	iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Structural and Molecular Biology, 2010, 17, 909-915.	3.6	1,026
3	CLIP Identifies Nova-Regulated RNA Networks in the Brain. Science, 2003, 302, 1212-1215.	6.0	984
4	Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neuroscience, 2011, 14, 452-458.	7.1	956
5	CLIP: A method for identifying protein–RNA interaction sites in living cells. Methods, 2005, 37, 376-386.	1.9	509
6	TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO Journal, 2011, 30, 277-288.	3.5	492
7	Aberrant methylation of t <scp>RNA</scp> s links cellular stress to neuroâ€developmental disorders. EMBO Journal, 2014, 33, 2020-2039.	3.5	490
8	Protein–RNA interactions: new genomic technologies and perspectives. Nature Reviews Genetics, 2012, 13, 77-83.	7.7	482
9	An RNA map predicting Nova-dependent splicing regulation. Nature, 2006, 444, 580-586.	13.7	477
10	NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs. Cell Reports, 2013, 4, 255-261.	2.9	448
11	Nova regulates brain-specific splicing to shape the synapse. Nature Genetics, 2005, 37, 844-852.	9.4	447
12	Alternative Splicing Regulatory Networks: Functions, Mechanisms, and Evolution. Molecular Cell, 2019, 76, 329-345.	4.5	446
13	Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. Cell Reports, 2013, 5, 1178-1186.	2.9	419
14	Direct Competition between hnRNP C and U2AF65 Protects the Transcriptome from the Exonization of Alu Elements. Cell, 2013, 152, 453-466.	13.5	398
15	The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes and Development, 2011, 25, 2158-2172.	2.7	387
16	iCLIP: Protein–RNA interactions at nucleotide resolution. Methods, 2014, 65, 274-287.	1.9	366
17	Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Reports, 2017, 18, 557-570.	2.9	326
18	Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing. PLoS Genetics, 2012, 8, e1002717.	1.5	296

#	Article	IF	CITATIONS
19	Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nature Structural and Molecular Biology, 2013, 20, 1443-1449.	3.6	293
20	The SMAD2/3 interactome reveals that TGFÎ ² controls m6A mRNA methylation in pluripotency. Nature, 2018, 555, 256-259.	13.7	283
21	hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 2015, 519, 491-494.	13.7	248
22	Advances in CLIP Technologies for Studies of Protein-RNA Interactions. Molecular Cell, 2018, 69, 354-369.	4.5	239
23	Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Scientific Reports, 2012, 2, 603.	1.6	231
24	Lessons from non-canonical splicing. Nature Reviews Genetics, 2016, 17, 407-421.	7.7	230
25	The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biology, 2012, 13, R17.	13.9	229
26	Understanding splicing regulation through RNA splicing maps. Trends in Genetics, 2011, 27, 89-97.	2.9	228
27	iCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions. PLoS Biology, 2010, 8, e1000530.	2.6	226
28	Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Research, 2011, 21, 1572-1582.	2.4	199
29	Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biology, 2012, 13, R67.	13.9	195
30	CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. Genes and Development, 2014, 28, 2370-2380.	2.7	193
31	The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Research, 2016, 26, 896-907.	2.4	191
32	Neuronal Elav-like (Hu) Proteins Regulate RNA Splicing and Abundance to Control Glutamate Levels and Neuronal Excitability. Neuron, 2012, 75, 1067-1080.	3.8	190
33	TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature, 2022, 603, 131-137.	13.7	188
34	iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution. Journal of Visualized Experiments, 2011, , .	0.2	168
35	RNA modifications detection by comparative Nanopore direct RNA sequencing. Nature Communications, 2021, 12, 7198.	5.8	163
36	RNA binding proteins and the regulation of neuronal synaptic plasticity. Current Opinion in Neurobiology, 2006, 16, 102-110.	2.0	161

#	Article	IF	CITATIONS
37	CLIP and complementary methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	152
38	Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS. Cell Reports, 2017, 19, 1739-1749.	2.9	146
39	HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature, 2015, 522, 444-449.	13.7	144
40	Common Molecular Pathways Mediate Long-Term Potentiation of Synaptic Excitation and Slow Synaptic Inhibition. Cell, 2005, 123, 105-118.	13.5	140
41	Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis. Brain, 2019, 142, 2572-2580.	3.7	135
42	A Global Regulatory Mechanism for Activating an Exon Network Required for Neurogenesis. Molecular Cell, 2014, 56, 90-103.	4.5	131
43	Recursive splicing in long vertebrate genes. Nature, 2015, 521, 371-375.	13.7	128
44	The RNA-binding protein HuR is essential for the B cell antibody response. Nature Immunology, 2015, 16, 415-425.	7.0	125
45	Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with <scp>PTB</scp> . EMBO Journal, 2015, 34, 653-668.	3.5	124
46	Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11062-11068.	3.3	121
47	Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing. Cell, 2018, 174, 1067-1081.e17.	13.5	121
48	TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell, 2021, 184, 4680-4696.e22.	13.5	121
49	Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nature Communications, 2018, 9, 2010.	5.8	116
50	Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics, 2016, 32, 1527-1535.	1.8	108
51	CELF4 Regulates Translation and Local Abundance of a Vast Set of mRNAs, Including Genes Associated with Regulation of Synaptic Function. PLoS Genetics, 2012, 8, e1003067.	1.5	106
52	Rbfox2-Coordinated Alternative Splicing of Mef2d and Rock2 Controls Myoblast Fusion during Myogenesis. Molecular Cell, 2014, 55, 592-603.	4.5	104
53	Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. ELife, 2020, 9, .	2.8	93
54	Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nature Communications, 2011, 2, 513.	5.8	91

#	Article	IF	CITATIONS
55	Regulation of alternative splicing by the circadian clock and food related cues. Genome Biology, 2012, 13, R54.	13.9	89
56	The Coilin Interactome Identifies Hundreds of Small Noncoding RNAs that Traffic through Cajal Bodies. Molecular Cell, 2014, 56, 389-399.	4.5	88
57	Promiscuous RNA Binding Ensures Effective Encapsidation of APOBEC3 Proteins by HIV-1. PLoS Pathogens, 2015, 11, e1004609.	2.1	86
58	Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Molecular Cell, 2019, 74, 951-965.e13.	4.5	85
59	Phosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5. Journal of Biological Chemistry, 2001, 276, 14490-14497.	1.6	83
60	High-Resolution RNA Maps Suggest Common Principles of Splicing and Polyadenylation Regulation by TDP-43. Cell Reports, 2017, 19, 1056-1067.	2.9	83
61	Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biology, 2014, 11, 146-155.	1.5	82
62	Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5′ splice site strength. Genome Biology, 2015, 16, 201.	3.8	81
63	CLIP: Construction of cDNA libraries for high-throughput sequencing from RNAs cross-linked to proteins in vivo. Methods, 2009, 48, 287-293.	1.9	79
64	3′ UTR Length and Messenger Ribonucleoprotein Composition Determine Endocleavage Efficiencies at Termination Codons. Cell Reports, 2014, 9, 555-568.	2.9	78
65	Evolution of Nova-Dependent Splicing Regulation in the Brain. PLoS Genetics, 2007, 3, e173.	1.5	76
66	Exon Junction Complex Shapes the Transcriptome by Repressing Recursive Splicing. Molecular Cell, 2018, 72, 496-509.e9.	4.5	75
67	Insights into the design and interpretation of iCLIP experiments. Genome Biology, 2017, 18, 7.	3.8	73
68	P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Molecular Cell, 2019, 74, 254-267.e10.	4.5	73
69	A retained intron in the 3′― <scp>UTR</scp> of <i>Calm3</i> <scp>mRNA</scp> mediates its Staufen2―and activityâ€dependent localization to neuronal dendrites. EMBO Reports, 2017, 18, 1762-1774.	2.0	58
70	The neuronal splicing factor Nova co-localizes with target RNAs in the dendrite. Frontiers in Neural Circuits, 2010, 4, 5.	1.4	57
71	Splicing repression allows the gradual emergence of new Alu-exons in primate evolution. ELife, 2016, 5, .	2.8	57
72	Regulatory feedback from nascent RNA to chromatin and transcription. Nature Reviews Molecular Cell Biology, 2017, 18, 331-337.	16.1	56

#	Article	IF	CITATIONS
73	Requirement of Heterogeneous Nuclear Ribonucleoprotein C for BRCA Gene Expression and Homologous Recombination. PLoS ONE, 2013, 8, e61368.	1.1	56
74	RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Molecular and Cellular Biology, 2015, 35, 2965-2978.	1.1	51
75	Data Science Issues in Studying Protein–RNA Interactions with CLIP Technologies. Annual Review of Biomedical Data Science, 2018, 1, 235-261.	2.8	51
76	The Future of Cross-Linking and Immunoprecipitation (CLIP). Cold Spring Harbor Perspectives in Biology, 2018, 10, a032243.	2.3	51
77	Subcellular mRNA Localization Regulates Ribosome Biogenesis in Migrating Cells. Developmental Cell, 2020, 55, 298-313.e10.	3.1	50
78	RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biology, 2014, 15, R20.	13.9	49
79	The RNA-Binding Protein Rrm4 is Essential for Efficient Secretion of Endochitinase Cts1. Molecular and Cellular Proteomics, 2011, 10, M111.011213.	2.5	48
80	Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nature Communications, 2017, 8, 530.	5.8	48
81	FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA. Nucleic Acids Research, 2019, 47, e113-e113.	6.5	48
82	The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators. Nucleic Acids Research, 2016, 44, 8933-8950.	6.5	47
83	Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE, 2012, 7, e48084.	1.1	44
84	Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cerebral Cortex, 2017, 27, bhw177.	1.6	42
85	Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Molecular Cell, 2021, 81, 4059-4075.e11.	4.5	42
86	SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discovery, 2018, 4, 33.	3.1	40
87	The key protein of endosomal mRNP transport Rrm4 binds translational landmark sites of cargo mRNAs. EMBO Reports, 2019, 20, .	2.0	38
88	Acute depletion of METTL3 implicates <i>N</i> ⁶ -methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Research, 2021, 31, 1395-1408.	2.4	37
89	Ribonucleoprotein complexes in neurologic diseases. Current Opinion in Neurobiology, 2008, 18, 516-523.	2.0	36
90	<i>Alu</i> elements: at the crossroads between disease and evolution. Biochemical Society Transactions, 2013, 41, 1532-1535.	1.6	36

#	Article	IF	CITATIONS
91	Control of a neuronal morphology program by an RNA-binding zinc finger protein, Unkempt. Genes and Development, 2015, 29, 501-512.	2.7	35
92	Aberrant sodium channel activity in the complex seizure disorder of <i>Celf4</i> mutant mice. Journal of Physiology, 2013, 591, 241-255.	1.3	33
93	'Oming in on RNA–protein interactions. Genome Biology, 2014, 15, 401.	13.9	32
94	Intergenic <i>Alu</i> exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Research, 2015, 43, gkv956.	6.5	31
95	CLIPing the brain: Studies of protein–RNA interactions important for neurodegenerative disorders. Molecular and Cellular Neurosciences, 2013, 56, 429-435.	1.0	30
96	Charting DENR-dependent translation reinitiation uncovers predictive uORF features and links to circadian timekeeping via Clock. Nucleic Acids Research, 2019, 47, 5193-5209.	6.5	30
97	Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: Evidence for involvement of splicing regulatory proteins. RNA Biology, 2014, 11, 1430-1446.	1.5	29
98	CDK11 is required for transcription of replication-dependent histone genes. Nature Structural and Molecular Biology, 2020, 27, 500-510.	3.6	29
99	MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 2021, 594, 117-123.	13.7	29
100	Transcript-specific characteristics determine the contribution of endo- and exonucleolytic decay pathways during the degradation of nonsense-mediated decay substrates. Rna, 2017, 23, 1224-1236.	1.6	26
101	A systems view of spliceosomal assembly and branchpoints with iCLIP. Nature Structural and Molecular Biology, 2019, 26, 930-940.	3.6	26
102	iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function. BMC Biology, 2015, 13, 111.	1.7	23
103	Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein. Nature Protocols, 2017, 12, 611-637.	5.5	21
104	Functional and Mechanistic Insights From Genome-Wide Studies of Splicing Regulation in the Brain. Advances in Experimental Medicine and Biology, 2007, 623, 148-160.	0.8	20
105	Matrin3: connecting gene expression with the nuclear matrix. Wiley Interdisciplinary Reviews RNA, 2016, 7, 303-315.	3.2	18
106	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	1.5	18
107	Differential Binding of Mitochondrial Transcripts by MRB8170 and MRB4160 Regulates Distinct Editing Fates of Mitochondrial mRNA in Trypanosomes. MBio, 2017, 8, .	1.8	17
108	How Do You Identify m6 A Methylation in Transcriptomes at High Resolution? A Comparison of Recent Datasets. Frontiers in Genetics, 2020, 11, 398.	1.1	17

#	Article	IF	CITATIONS
109	Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP). Methods in Molecular Biology, 2017, 1562, 91-106.	0.4	15
110	The Transcriptome-wide Landscape and Modalities of EJC Binding in Adult Drosophila. Cell Reports, 2019, 28, 1219-1236.e11.	2.9	15
111	What, where, and when: the importance of post-transcriptional regulation in the brain. Frontiers in Neuroscience, 2013, 7, 192.	1.4	15
112	Genomic Accumulation of Retrotransposons Was Facilitated by Repressive RNAâ€Binding Proteins: A Hypothesis. BioEssays, 2019, 41, e1800132.	1.2	13
113	Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biology, 2021, 22, 136.	3.8	13
114	Ultraplex: A rapid, flexible, all-in-one fastq demultiplexer. Wellcome Open Research, 2021, 6, 141.	0.9	11
115	Chromatin-contact atlas reveals disorder-mediated protein interactions and moonlighting chromatin-associated RBPs. Nucleic Acids Research, 2021, 49, 13092-13107.	6.5	9
116	High-throughput sequencing methods to study neuronal RNA–protein interactions. Biochemical Society Transactions, 2009, 37, 1278-1280.	1.6	8
117	Cholinergic regulation of striatal Nova mRNAs. Neuroscience, 2010, 169, 619-627.	1.1	8
118	psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nature Communications, 2021, 12, 1488.	5.8	8
119	A genetically-encoded crosslinker screen identifies SERBP1 as a PKCε substrate influencing translation and cell division. Nature Communications, 2021, 12, 6934.	5.8	7
120	Identifying ribosome heterogeneity using ribosome profiling. Nucleic Acids Research, 2022, 50, e95-e95.	6.5	7
121	Sixty years of genome biology. Genome Biology, 2013, 14, 113.	13.9	6
122	RGS4 RNA Secondary Structure Mediates Staufen2 RNP Assembly in Neurons. International Journal of Molecular Sciences, 2021, 22, 13021.	1.8	5
123	The greatest catch: big game fishing for mRNA-bound proteins. Genome Biology, 2012, 13, 163.	13.9	4
124	Using human pluripotent stem cells to study post-transcriptional mechanisms of neurodegenerative diseases. Brain Research, 2012, 1462, 129-138.	1.1	4
125	Open access, open data and peer review. Genome Biology, 2020, 21, 86.	3.8	4
126	Metabolic turnover and dynamics of modified ribonucleosides by 13C labeling. Journal of Biological Chemistry, 2021, 297, 101294.	1.6	3

#	Article	IF	CITATIONS
127	Cross-Regulation Between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. SSRN Electronic Journal, 0, , .	0.4	2
128	Sequential Inverse Dysregulation of the RNA Helicases DDX3X and DDX3Y Facilitates MYC-Driven Lymphomagenesis. SSRN Electronic Journal, 0, , .	0.4	2
129	â€~Read–through marking' reveals differential nucleotide composition of read-through and truncated cDNAs in iCLIP. Wellcome Open Research, 2018, 3, 77.	0.9	2
130	The origin of neural microexons. Nature Ecology and Evolution, 2019, 3, 526-527.	3.4	1
131	Protein–RNA interactions: new genomic technologies and perspectives. , 0, .		1
132	U1A is a positive regulator of the expression of heterologous and cellular genes involved in cell proliferation and migration. Molecular Therapy - Nucleic Acids, 2022, 28, 831-846.	2.3	1
133	[S18]: RNA regulation and modular control of the neuronal synapse. International Journal of Developmental Neuroscience, 2006, 24, 479-479.	0.7	0
134	Jernej Ule: An RNA runaway success. Journal of Cell Biology, 2008, 180, 448-449.	2.3	0
135	No way out: when <scp>RNA</scp> elements promote nuclear retention. EMBO Journal, 2018, 37, .	3.5	0
136	Identification of HuR-specific RNA interactome in TGF-ß1-activated fibroblasts in response to cigarette smoke. , 2021, , .		0