
Caterina Viglianisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3569313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Efficient Catalytic Method for Regioselective Sulfenylation of Electronâ€Rich Azaâ€Aromatics at Room Temperature. European Journal of Organic Chemistry, 2013, 2013, 132-140.	2.4	59
2	Effect of <i>ortho</i> -SR Groups on Oâ^'H Bond Strength and H-Atom Donating Ability of Phenols:  A Possible Role for the Tyr-Cys Link in Galactose Oxidase Active Site?. Journal of the American Chemical Society, 2008, 130, 237-244.	13.7	55
3	Synthesis and "double-faced―antioxidant activity of polyhydroxylated 4-thiaflavans. Organic and Biomolecular Chemistry, 2005, 3, 3066.	2.8	49
4	Evaluation of selenide, diselenide and selenoheterocycle derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 2518-2523.	3.0	44
5	Kinetic and Thermochemical Study of the Antioxidant Activity of Sulfurâ€Containing Analogues of Vitamin E. Chemistry - A European Journal, 2007, 13, 8223-8230.	3.3	42
6	Hydrogenâ€Atom Transfer Reactions from <i>ortho</i> â€Alkoxyâ€Substituted Phenols: An Experimental Approach. Chemistry - A European Journal, 2009, 15, 4402-4410.	3.3	42
7	Chiroptical properties of the ground and excited states of two thia-bridged triarylamine heterohelicenes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 138-145.	3.9	39
8	Amphiphilic antioxidants from "cashew nut shell liquid―(CNSL) waste. Organic and Biomolecular Chemistry, 2011, 9, 1352.	2.8	38
9	Optimization of the Antioxidant Activity of Hydroxyâ€Substituted 4â€Thiaflavanes: A Proofâ€ofâ€Concept Study. Chemistry - A European Journal, 2011, 17, 12396-12404.	3.3	35
10	Ethyleneâ€based copolymers with tunable content of polymerizable hindered phenols as nonreleasing macromolecular additives. Journal of Polymer Science Part A, 2008, 46, 6393-6406.	2.3	34
11	Thia-bridged triarylamine heterohelicene radical cations as redox-driven molecular switches. Chemical Communications, 2015, 51, 11452-11454.	4.1	34
12	Proton–electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols. Chemical Communications, 2012, 48, 11904.	4.1	33
13	Role of Noncovalent Sulfur···Oxygen Interactions in Phenoxyl Radical Stabilization: Synthesis of Super Tocopherol-like Antioxidants. Organic Letters, 2016, 18, 5464-5467.	4.6	33
14	[2Â+Â4] and [4Â+Â2] Cycloadditions ofo-Thioquinones with 1,3-Dienes:Â A Computational Study. Journal of Organic Chemistry, 2006, 71, 5507-5514.	3.2	32
15	Polyhydroxylated 4-thiaflavans as multipotent antioxidants: Protective effect on oxidative DNA damage in vitro. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1957-1960.	2.2	25
16	Linking an αâ€Tocopherol Derivative to Cobalt(0) Nanomagnets: Magnetically Responsive Antioxidants with Superior Radical Trapping Activity and Reduced Cytotoxicity. Chemistry - A European Journal, 2014, 20, 6857-6860.	3.3	24
17	LDPEâ€based blends and films stabilized with nonreleasing polymeric antioxidants for safer food packaging. Journal of Applied Polymer Science, 2012, 124, 3912-3920.	2.6	22
18	Novel ethylene/norbornene copolymers as nonreleasing antioxidants for foodâ€contact polyolefinic materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1007-1016.	2.1	22

CATERINA VIGLIANISI

#	Article	IF	CITATIONS
19	A Baseâ€Mediated Mild Sulfenylation of Indoles and Pyrrole with αâ€Acylthiones. European Journal of Organic Chemistry, 2014, 2014, 6405-6410.	2.4	21
20	A Straightforward Heteroâ€Diels–Alder Approach to (2â€ <i>ambo</i> ,4′ <i>R</i> ,8′ <i>R</i>)â€î±/β/γ/Î′â€4â€Thiatocopherol. European Journal of Organic Cho 2010, 2218-2225.	emistry, 20	1020
21	A Oneâ€Pot Access to Benzo[b][1,4]selenazines from 2â€Aminoaryl Diselenides. European Journal of Organic Chemistry, 2016, 2016, 3097-3102.	2.4	20
22	[2+4] vs [4+2] Cycloaddition reactions of o-thioquinones with 1,3-dienes. Tetrahedron, 2003, 59, 5523-5530.	1.9	19
23	Ethylene/hindered phenol substituted norbornene copolymers: Synthesis and NMR structural determination. Journal of Polymer Science Part A, 2012, 50, 4647-4655.	2.3	19
24	Regioselective Electrophilic Access to Naphtho[1,2- <i>b</i> :8,7- <i>b</i> ′]- and -[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophenes. Journal of Organic Chemistry, 2013, 78, 3496-3502.	3.2	19
25	Copperâ€Mediated Oneâ€Pot Transformation of 2â€∢i>Nâ€Sulfonyl―aminoaryl Diselenides into Benzo[<i>b</i>][1,4]selenazines. Advanced Synthesis and Catalysis, 2012, 354, 77-82.	4.3	18
26	Antioxidant and Antiradical Activity of Hydroxy-Substituted 4-Thiaflavanes. Helvetica Chimica Acta, 2006, 89, 2462-2472.	1.6	15
27	Dihydrobenzo[1,4]oxathiine: A Multi-Potent Pharmacophoric Heterocyclic Nucleus. Current Medicinal Chemistry, 2010, 17, 915-928.	2.4	15
28	Structural and Medium Effects on the Reactions of the Cumyloxyl Radical with Intramolecular Hydrogen Bonded Phenols. The Interplay Between Hydrogen-Bonding and Acid-Base Interactions on the Hydrogen Atom Transfer Reactivity and Selectivity. Journal of Organic Chemistry, 2014, 79, 6196-6205.	3.2	15
29	Protective role of benzoselenophene derivatives of resveratrol on the induced oxidative stress in intestinal myofibroblasts and osteocytes. Chemico-Biological Interactions, 2017, 275, 13-21.	4.0	14
30	Chain Breaking Antioxidant Activity of Heavy (S, Se, Te) Chalcogens Substituted Polyphenols. Antioxidants, 2019, 8, 487.	5.1	14
31	Synthesis of Heterohelicenes by a Catalytic Multiâ€Component Povarov Reaction. European Journal of Organic Chemistry, 2019, 2019, 164-167.	2.4	13
32	Macromolecular Nonâ€Releasing Additives for Commercial Polyolefins. Macromolecular Symposia, 2007, 260, 21-26.	0.7	12
33	A Straightforward Route to Potent Phenolic Chain-Breaking Antioxidants by Acid-Promoted Transposition of 1,4-Benzo[b]oxathiines to Dihydrobenzo[b]thiophenes. Chemistry - A European Journal, 2015, 21, 16639-16645.	3.3	12
34	Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3731-3733.	2.2	11
35	Stabilization of an Enantiopure Subâ€monolayer of Helicene Radical Cations on a Au(111) Surface through Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 15276-15280.	13.8	11
36	Proton oupled Electron Transfer from Hydrogenâ€Bonded Phenols to Benzophenone Triplets. Chemistry - A European Journal, 2017, 23, 5299-5306.	3.3	10

CATERINA VIGLIANISI

#	Article	IF	CITATIONS
37	Fully consistent terpolymeric non-releasing antioxidant additives for long lasting polyolefin packaging materials. Polymer Degradation and Stability, 2017, 144, 167-175.	5.8	9
38	Ditocopheryl Sulfides and Disulfides: Synthesis and Antioxidant Profile. Chemistry - A European Journal, 2019, 25, 9108-9116.	3.3	9
39	Copperâ€Mediated Oneâ€Pot Access to Benzo[<i>b</i>][1,4]thiazines from 2â€ <i>N</i> â€Sulfonylaminoaryl Disulfides. European Journal of Organic Chemistry, 2012, 2012, 1707-1711.	2.4	8
40	Copperâ€Mediated Oneâ€Pot Access to 2,3â€Dihydrobenzo[<i>b</i>][1,4]oxathiines from <i>o</i> , <i>o</i> ′â€Dihydroxydisulfides. Heteroatom Chemistry, 2014, 25, 361-366.	0.7	8
41	Towards New Catalytic Antioxidants: A Simple and Mild Synthesis of Selenenylsulfides. Catalysts, 2019, 9, 333.	3.5	8
42	Magnetic nanoantioxidants with improved radical-trapping stoichiometry as stabilizers for inhibition of peroxide formation in ethereal solvents. Scientific Reports, 2019, 9, 17219.	3.3	8
43	Thiaâ€Bridged Triarylamine Hetero[4]Helicenes: Regioselective Synthesis and Functionalization. European Journal of Organic Chemistry, 2019, 2019, 168-175.	2.4	8
44	Synthesis of Highly Functionalized 1,3-Oxathioles via an Unusual [4+1] Annulation of α,α'-Dioxothione with 1,2-Diaza-1,3-dienes. Synlett, 2012, 23, 2947-2950.	1.8	7
45	Design and Synthesis of Olefin Copolymers with Tunable Amounts of Comonomers Bearing Stabilizing Functionalities. Macromolecular Reaction Engineering, 2013, 7, 84-90.	1.5	7
46	Selenosilane-Promoted Selective Mild Transformation of N-Thiophthalimides into Symmetric Disulfides. Synthesis, 2019, 51, 1819-1824.	2.3	7
47	Sulfur-mediated synthesis and antimicrobial activity of 4-thioisosteres of flavanoids. Journal of Sulfur Chemistry, 2004, 25, 317-327.	2.0	6
48	From catecholâ€ŧocopherol to catecholâ€hydroquinone polyphenolic antioxidant hybrids. Heteroatom Chemistry, 2018, , e21466.	0.7	6
49	SET and HAT/PCET acidâ€mediated oxidation processes in helical shaped fused bisâ€phenothiazines. ChemPhysChem, 2021, 22, 1446-1454.	2.1	5
50	Helicalâ€Shaped Bisâ€1,4â€benzoxathiines through an Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reac of <i>ortho</i> â€Thioquinones. European Journal of Organic Chemistry, 2016, 2016, 5386-5392.	tion 2.4	4
51	From simple phenols to potent chain-breaking antioxidants by transposition of benzo[1,4]oxathiines to benzo[b]thiophenes. Arkivoc, 2020, 2019, 65-85.	0.5	4
52	Protective Role of Natural and Semi-Synthetic Tocopherols on TNFα-Induced ROS Production and ICAM-1 and Cl-2 Expression in HT29 Intestinal Epithelial Cells. Antioxidants, 2021, 10, 160.	5.1	4
53	<i>Ortho</i> â€ŧhioquinones and mediterranean diet: The sulfur connection. Heteroatom Chemistry, 2007, 18, 489-499.	0.7	3
54	Resolution of a Configurationally Stable Hetero[4]helicene. Molecules, 2022, 27, 1160.	3.8	3

CATERINA VIGLIANISI

#	Article	IF	CITATIONS
55	Catechol-Containing Hydroxylated Biomimetic 4-Thiaflavanes as Inhibitors of Amyloid Aggregation. Biomimetics, 2017, 2, 6.	3.3	2
56	Thia-Bridged Triarylamine[4]helicene-Functionalized PolynorborÂnenes as Redox-Active pH-Sensitive Polymers. Synthesis, 2021, 53, 2602-2611.	2.3	2
57	Stabilization of an Enantiopure Subâ€monolayer of Helicene Radical Cations on a Au(111) Surface through Noncovalent Interactions. Angewandte Chemie, 2021, 133, 15404-15408.	2.0	1
58	Structure and conformational dynamics of an aromatic sulfonamide: NMR, X-Ray and computational studies. Arkivoc, 2015, 2015, 66-79.	0.5	1
59	[2 + 4] vs [4 + 2] Cycloaddition Reactions of o-Thioquinones with 1,3-Dienes ChemInform, 2003, 34, no.	0.0	0
60	Generation and Trapping of <i>o</i> -Thioquinones on Solid Support: Synthesis of Hydroxylated 4-Thiaflavans. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1233-1246.	1.6	0
61	Inside Cover: Optimization of the Antioxidant Activity of Hydroxyâ€Substituted 4â€Thiaflavanes: A Proofâ€ofâ€Concept Study (Chem. Eur. J. 44/2011). Chemistry - A European Journal, 2011, 17, 12214-12214.	3.3	Ο