Jan W Andzelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3569216/publications.pdf Version: 2024-02-01

IAN W ANDZELM

#	Article	IF	CITATIONS
1	Computational Study of Structural and Energetic Properties of Ammonium Perchlorate at Interfaces. Journal of Physical Chemistry C, 2021, 125, 12297-12304.	3.1	9
2	Highly Thermostable Dynamic Structures of Polyaramid Two-Dimensional Polymers. Macromolecules, 2021, 54, 1291-1303.	4.8	3
3	Effects of Finite Lengths of Chains on the Structural and Mechanical Properties of Polyethylene Fibers. Macromolecules, 2020, 53, 18-28.	4.8	6
4	Interface binding and mechanical properties of MXene-epoxy nanocomposites. Composites Science and Technology, 2020, 192, 108124.	7.8	64
5	High strength films from oriented, hydrogen-bonded "graphamid―2D polymer molecular ensembles. Scientific Reports, 2018, 8, 3708.	3.3	24
6	Ordering and Crystallization of Entangled Polyethylene Melts under Uniaxial Tension: A Molecular Dynamics Study. Macromolecules, 2018, 51, 9635-9648.	4.8	49
7	Bonding of cysteamine on InAs surfaces. Applied Surface Science, 2018, 462, 489-501.	6.1	5
8	Calculations of free energy of surface interactions in crystalline polyethylene. Journal of Chemical Physics, 2018, 149, 014701.	3.0	6
9	Molecular origins of anisotropic shock propagation in crystalline and amorphous polyethylene. Physical Review Materials, 2018, 2, .	2.4	18
10	Molecular Dynamics Simulation of the Effects of Layer Thickness and Chain Tilt on Tensile Deformation Mechanisms of Semicrystalline Polyethylene. Macromolecules, 2017, 50, 1700-1712.	4.8	57
11	First Principles Modeling of Cathodic Reaction Thermodynamics in Dilute Magnesium Alloys. Corrosion, 2017, 73, 506-517.	1.1	27
12	Vibrational Analysis of Semicrystalline Polyethylene Using Molecular Dynamics Simulation. Macromolecules, 2017, 50, 6690-6701.	4.8	12
13	Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation. Physical Review Materials, 2017, 1, .	2.4	15
14	Modeling reaction pathways for hydrogen evolution and water dissociation on magnesium. Electrochimica Acta, 2016, 210, 261-270.	5.2	44
15	AIREBO-M: A reactive model for hydrocarbons at extreme pressures. Journal of Chemical Physics, 2015, 142, 024903.	3.0	159
16	First Principles Modeling of Water Dissociation on Mg(0001) and Development of a Mg Surface Pourbaix Diagram. Corrosion, 2015, 71, 209-223.	1.1	45
17	Mechanical and Structural Characterization of Semicrystalline Polyethylene under Tensile Deformation by Molecular Dynamics Simulations. Macromolecules, 2015, 48, 4228-4239.	4.8	111
18	A molecular simulation study of the glass transition of cross-linked poly(dicyclopentadiene) networks. Chemical Physics Letters, 2015, 637, 103-109.	2.6	34

Jan W Andzelm

#	Article	IF	CITATIONS
19	Chemical and physical passivation of type II strained-layer superlattice devices by means of thiolated self-assembled monolayers and polymer encapsulates. Infrared Physics and Technology, 2015, 70, 48-52.	2.9	5
20	Computational study of thermal and mechanical properties of nylons and bio-based furan polyamides. Polymer, 2014, 55, 166-174.	3.8	37
21	First principles investigation of water adsorption and charge transfer on Ill–V(110) semiconductor surfaces. Surface Science, 2014, 622, 71-82.	1.9	10
22	Structural and mechanical properties of advanced polymer gels with rigid side-chains using coarse-grained molecular dynamics. Polymer, 2014, 55, 5266-5275.	3.8	15
23	Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials. Applied Surface Science, 2014, 320, 414-428.	6.1	11
24	Role of entanglements and bond scission in high strain-rate deformation of polymer gels. Polymer, 2014, 55, 2543-2551.	3.8	17
25	High strain rate mechanical properties of a cross-linked epoxy across the glass transition. Polymer, 2013, 54, 7048-7057.	3.8	94
26	Effect of polymer solvent on the mechanical properties of entangled polymer gels: Coarse-grained molecular simulation. Polymer, 2013, 54, 2555-2564.	3.8	37
27	Exploring the ability of a multiscale coarse-grained potential to describe the stress-strain response of glassy polystyrene. Physical Review E, 2013, 87, 042606.	2.1	40
28	Coarse-grained modeling of model poly(urethane urea)s: Microstructure and interface aspects. Polymer, 2012, 53, 4512-4524.	3.8	15
29	Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics. Journal of Chemical Physics, 2012, 137, 204901.	3.0	46
30	Fast protocol for equilibration of entangled and branched polymer chains. Chemical Physics Letters, 2012, 523, 139-143.	2.6	45
31	Phase behavior of SEBS triblock copolymer gels. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1479-1491.	2.1	20
32	Modeling viscoelastic properties of triblock copolymers: A DPD simulation study. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 15-25.	2.1	40
33	Geometry optimization of solids using delocalized internal coordinates. Chemical Physics Letters, 2001, 335, 321-326.	2.6	167