
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trefoil Factor Family: A Troika for Lung Repair and Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 252-259.	1.4	5
2	Schistosoma mansoni infection induces plasmablast and plasma cell death in the bone marrow and accelerates the decline of host vaccine responses. PLoS Pathogens, 2022, 18, e1010327.	2.1	9
3	"Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity― Mucosal Immunology, 2022, 15, 1199-1211.	2.7	5
4	The ubiquitin ligase Cul5 regulates CD4+ T cell fate choice and allergic inflammation. Nature Communications, 2022, 13, 2786.	5.8	9
5	Myeloid-Derived IL-33 Limits the Severity of Dextran Sulfate Sodium–Induced Colitis. American Journal of Pathology, 2021, 191, 266-273.	1.9	7
6	Tuft cells in the pathogenesis of chronic rhinosinusitis with nasal polyps and asthma. Annals of Allergy, Asthma and Immunology, 2021, 126, 143-151.	0.5	14
7	Immune System Investigation Using Parasitic Helminths. Annual Review of Immunology, 2021, 39, 639-665.	9.5	23
8	Neuroimmune regulatory networks of the airway mucosa in allergic inflammatory disease. Journal of Leukocyte Biology, 2021, 111, 209-221.	1.5	13
9	LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scandinavian Journal of Gastroenterology, 2021, 56, 791-805.	0.6	8
10	T Regulatory Cells Influence Decisions between Concomitant Immunity versus Sterile Cure. Journal of Immunology, 2021, 207, 3-4.	0.4	0
11	Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathogens, 2021, 17, e1009709.	2.1	10
12	Non-hematopoietic IL-4Rα expression contributes to fructose-driven obesity and metabolic sequelae. International Journal of Obesity, 2021, 45, 2377-2387.	1.6	4
13	Parasitic helminth infections in humans modulate Trefoil Factor levels in a manner dependent on the species of parasite and age of the host. PLoS Neglected Tropical Diseases, 2021, 15, e0009550.	1.3	2
14	Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Science Immunology, 2020, 5, .	5.6	73
15	TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths. Nature Communications, 2019, 10, 4408.	5.8	62
16	Cell-Intrinsic Wnt4 Influences Conventional Dendritic Cell Fate Determination to Suppress Type 2 Immunity. Journal of Immunology, 2019, 203, 511-519.	0.4	6
17	Group 2 Innate Lymphoid Cells (ILC2): Type 2 Immunity and Helminth Immunity. International Journal of Molecular Sciences, 2019, 20, 2276.	1.8	74
18	Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. International Forum of Allergy and Rhinology, 2019, 9, 730-737.	1.5	29

#	Article	IF	CITATIONS
19	Development of solitary chemosensory cells in the distal lung after severe influenza injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1141-L1149.	1.3	74
20	Sentinels at the wall: epithelialâ€derived cytokines serve as triggers of upper airway type 2 inflammation. International Forum of Allergy and Rhinology, 2019, 9, 93-99.	1.5	35
21	Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunology, 2019, 12, 64-76.	2.7	47
22	Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. American Journal of Pathology, 2018, 188, 1161-1170.	1.9	16
23	Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2018, 142, 460-469.e7.	1.5	123
24	Solitary chemosensory cells producing interleukinâ€25 and groupâ€2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2018, 8, 900-906.	1.5	47
25	Perusal of parasitic nematode â€~omics in the post-genomic era. Molecular and Biochemical Parasitology, 2017, 215, 11-22.	0.5	13
26	The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science, 2016, 352, 99-103.	6.0	67
27	Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40–Dependent Lung Injury during Hookworm Infection. Journal of Immunology, 2016, 196, 4632-4640.	0.4	23
28	Immune polarization by hookworms: taking cues from <scp>T</scp> helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology, 2016, 148, 115-124.	2.0	37
29	A protective role for IL-13 receptor $\hat{I}\pm$ 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunology, 2016, 9, 240-253.	2.7	37
30	Myeloid expression of the <scp>AP</scp> â€4 transcription factor <scp>JUNB</scp> modulates outcomes of type 1 and type 2 parasitic infections. Parasite Immunology, 2015, 37, 470-478.	0.7	18
31	JUNB Is a Key Transcriptional Modulator of Macrophage Activation. Journal of Immunology, 2015, 194, 177-186.	0.4	94
32	<scp>PD</scp> â€1 modulates steadyâ€state and infectionâ€induced <scp>IL</scp> â€10 production in vivo. European Journal of Immunology, 2014, 44, 469-479.	1.6	18
33	Helminth infections predispose mice to pneumococcal pneumonia but not to other pneumonic pathogens. Medical Microbiology and Immunology, 2014, 203, 357-364.	2.6	14
34	Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection. Immunity, 2013, 39, 744-757.	6.6	185
35	Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nature Medicine, 2013, 19, 739-746.	15.2	700
36	IL-4Rα on CD4+ T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates. Journal of Leukocyte Biology, 2013, 93, 933-942.	1.5	44

#	Article	IF	CITATIONS
37	IL-33 drives biphasic IL-13 production for noncanonical Type 2 immunity against hookworms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 282-287.	3.3	190
38	Sonic Hedgehog Acts Via A Smoothenedâ€Dependent Pathway As A Macrophage Chemoattractant. FASEB Journal, 2013, 27, 948.4.	0.2	0
39	A Novel Mouse Model of Schistosoma haematobium Egg-Induced Immunopathology. PLoS Pathogens, 2012, 8, e1002605.	2.1	96
40	Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. Journal of Experimental Medicine, 2012, 209, 607-622.	4.2	192
41	Trefoil Factor 2 Negatively Regulates Type 1 Immunity against <i>Toxoplasma gondii</i> . Journal of Immunology, 2012, 189, 3078-3084.	0.4	23
42	IFN-γ–Driven IDO Production from Macrophages Protects IL-4Rα–Deficient Mice against Lethality during Schistosoma mansoni Infection. American Journal of Pathology, 2012, 180, 2001-2008.	1.9	23
43	TGF-β–Responsive Myeloid Cells Suppress Type 2 Immunity and Emphysematous Pathology after Hookworm Infection. American Journal of Pathology, 2012, 181, 897-906.	1.9	13
44	TGFâ€Î² limits ILâ€33 production and promotes the resolution of colitis through regulation of macrophage function. European Journal of Immunology, 2011, 41, 2000-2009.	1.6	77
45	Toxoplasma gondii Rhoptry Kinase ROP16 Activates STAT3 and STAT6 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. PLoS Pathogens, 2011, 7, e1002236.	2.1	226
46	Arginase I Suppresses IL-12/IL-23p40–Driven Intestinal Inflammation during Acute Schistosomiasis. Journal of Immunology, 2010, 184, 6438-6446.	0.4	106
47	Endogenously Produced IL-4 Nonredundantly Stimulates CD8+ T Cell Proliferation. Journal of Immunology, 2009, 182, 1429-1438.	0.4	49
48	Intestinal epithelial cell secretion of RELM-Î ² protects against gastrointestinal worm infection. Journal of Experimental Medicine, 2009, 206, 2947-2957.	4.2	236
49	ILâ€4 ^{â^'/â^'} mice with lethal <i>Mesocestoides corti</i> infections – reduced Th2 cytokines and alternatively activated macrophages. Parasite Immunology, 2009, 31, 741-749.	0.7	13
50	Differential requirements for interleukin (IL)â€4 and ILâ€13 in protein contact dermatitis induced by <i>Anisakis</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1309-1318.	2.7	22
51	Peanuts can contribute to anaphylactic shock by activating complement. Journal of Allergy and Clinical Immunology, 2009, 123, 342-351.	1.5	119
52	IL-10 and TGF-Î ² Redundantly Protect against Severe Liver Injury and Mortality during Acute Schistosomiasis. Journal of Immunology, 2008, 181, 7214-7220.	0.4	97
53	IL-4Rα Expression by Bone Marrow-Derived Cells Is Necessary and Sufficient for Host Protection against Acute Schistosomiasis. Journal of Immunology, 2008, 180, 4948-4955.	0.4	33
54	CD4+T Cell-Specific Deletion of IL-4 Receptor α Prevents Ovalbumin-Induced Anaphylaxis by an IFN-γ-Dependent Mechanism. Journal of Immunology, 2007, 179, 2758-2765.	0.4	20

#	Article	IF	CITATIONS
55	TH1-Dominant Granulomatous Pathology Does Not Inhibit Fibrosis or Cause Lethality during Murine Schistosomiasis. American Journal of Pathology, 2006, 169, 1701-1712.	1.9	26
56	Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. Journal of Allergy and Clinical Immunology, 2006, 117, 1098-1105.	1.5	145
57	Alternative Macrophage Activation Is Essential for Survival during Schistosomiasis and Downmodulates T Helper 1 Responses and Immunopathology. Immunity, 2004, 21, 455.	6.6	3
58	Human Immunoglobulin G Mediates Protective Immunity and Identifies Protective Antigens against LarvalStrongyloides stercoralisin Mice. Journal of Infectious Diseases, 2004, 189, 1282-1290.	1.9	35
59	Alternative Macrophage Activation Is Essential for Survival during Schistosomiasis and Downmodulates T Helper 1 Responses and Immunopathology. Immunity, 2004, 20, 623-635.	6.6	651
60	Immunoaffinity-isolated antigens induce protective immunity against larval Strongyloides stercoralis in mice. Experimental Parasitology, 2002, 100, 112-120.	0.5	38
61	The role of B cells in immunity against larval Strongyloides stercoralis in mice. Parasite Immunology, 2002, 24, 95-101.	0.7	57
62	Role of IL-5 in Innate and Adaptive Immunity to Larval <i>Strongyloides stercoralis</i> in Mice. Journal of Immunology, 2000, 165, 4544-4551.	0.4	118
63	The Baculovirus Anti-apoptotic p35 Protein Promotes Transformation of Mouse Embryo Fibroblasts. Journal of Biological Chemistry, 1998, 273, 10376-10380.	1.6	13
64	A Novel Class of Peptides That Induce Apoptosis and Abrogate Tumorigenesisin Vivo. Biochemical and Biophysical Research Communications, 1997, 240, 208-212.	1.0	7