Leandro F M Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568323/publications.pdf

Version: 2024-02-01

567281 501196 35 845 15 28 citations h-index g-index papers 35 35 35 362 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Evaluation of the induced mechanical deterioration of alkali-silica reaction affected concrete under distinct confinement conditions through the Stiffness Damage Test. Cement and Concrete Composites, 2022, 126, 104343.	10.7	4
2	Simplified approach for quantitative inspections of concrete structures using digital image correlation. Engineering Structures, 2022, 252, 113725.	5.3	8
3	Condition assessment of alkali-silica reaction affected concrete under various confinement conditions incorporating fine and coarse reactive aggregates. Cement and Concrete Research, 2022, 153, 106694.	11.0	12
4	Appraisal of visual inspection techniques to understand and describe ASR-induced development under distinct confinement conditions. Construction and Building Materials, 2022, 323, 126549.	7.2	10
5	Freezing and Thawing Resistance of Fine Recycled Concrete Aggregate (FRCA) Mixtures Designed with Distinct Techniques. Materials, 2022, 15, 1342.	2.9	5
6	Influence of the Mix Proportion and Aggregate Features on the Performance of Eco-Efficient Fine Recycled Concrete Aggregate Mixtures. Materials, 2022, 15, 1355.	2.9	4
7	Assessment of effects of ASR-induced cracking on direct shear strength of recycled concrete. Materiales De Construccion, 2022, 72, e280.	0.7	1
8	The evaluation of Wood Ash as a potential preventive measure against alkali-silica reaction induced expansion and deterioration. Journal of Cleaner Production, 2022, 358, 131984.	9.3	7
9	Microscopic assessment of recycled concrete aggregate (RCA) mixtures affected by alkali-silica reaction (ASR). Construction and Building Materials, 2021, 269, 121250.	7.2	16
10	Overall assessment of alkali-silica reaction affected recycled concrete aggregate mixtures derived from construction and demolition waste. Cement and Concrete Research, 2021, 142, 106350.	11.0	27
11	Influence of Alkali-Silica reaction (ASR) on aggregate interlock and shear-friction behavior of reinforced concrete members. Engineering Structures, 2021, 233, 111890.	5.3	3
12	Microscopic characterization of alkali-silica reaction (ASR) affected recycled concrete mixtures induced by reactive coarse and fine aggregates. Cement and Concrete Research, 2021, 144, 106426.	11.0	22
13	Comprehensive semi-empirical approach to describe alkali aggregate reaction (AAR) induced expansion in the laboratory. Journal of Building Engineering, 2021, 40, 102298.	3.4	10
14	The influence of the binder type & Degregate nature on the electrical resistivity of conventional concrete. Journal of Building Engineering, 2021, 43, 102540.	3.4	17
15	Assessment of Damage and Expansion. RILEM State-of-the-Art Reports, 2021, , 15-40.	0.7	2
16	Evaluation of the fresh and hardened state properties of low cement content systems. Magazine of Concrete Research, 2020, 72, 232-245.	2.0	12
17	Condition assessment of an ASR-affected overpass after nearly 50 years in service. Construction and Building Materials, 2020, 236, 117554.	7.2	26
18	Assessing condition of concrete affected by internal swelling reactions (ISR) through the Damage Rating Index (DRI). Cement, 2020, 1-2, 100001.	2.7	9

#	Article	IF	Citations
19	Finite Element Assessment of the ASR-Affected Paulo Afonso IV Dam. Journal of Performance of Constructed Facilities, 2020, 34, .	2.0	5
20	Evaluation of a direct shear test setup to quantify AAR-induced expansion and damage in concrete. Construction and Building Materials, 2019, 229, 116806.	7.2	14
21	The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. Journal of Building Engineering, 2019, 25, 100815.	3.4	22
22	Investigation of the use of continuous particle packing models (PPMs) on the fresh and hardened properties of low-cement concrete (LCC) systems. Construction and Building Materials, 2019, 195, 524-536.	7.2	46
23	Eco-efficient low cement recycled concrete aggregate mixtures for structural applications. Construction and Building Materials, 2018, 169, 724-732.	7.2	31
24	Comprehensive damage assessment in concrete affected by different internal swelling reaction (ISR) mechanisms. Cement and Concrete Research, 2018, 107, 284-303.	11.0	71
25	Structural implications of internal swelling reactions in concrete: review and research needs. Magazine of Concrete Research, 2018, 70, 1052-1063.	2.0	8
26	FE approach to perform the condition assessment of a concrete overpass damaged by ASR after 50†years in service. Engineering Structures, 2018, 177, 133-146.	5. 3	18
27	Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cement and Concrete Research, 2017, 93, 17-31.	11.0	117
28	Evaluation of different techniques for the diagnosis & prognosis of Internal Swelling Reaction (ISR) mechanisms in concrete. Construction and Building Materials, 2017, 156, 956-964.	7.2	27
29	Practical use of the Stiffness Damage Test (SDT) for assessing damage in concrete infrastructure affected by alkali-silica reaction. Construction and Building Materials, 2016, 125, 1178-1188.	7.2	43
30	Use of Damage Rating Index to Quantify Alkali-Silica Reaction Damage in Concrete: Fine versus Coarse Aggregate. ACI Materials Journal, 2016, 113, .	0.2	15
31	Evaluation of the Stiffness Damage Test (SDT) as a tool for assessing damage in concrete due to alkali-silica reaction (ASR): Input parameters and variability of the test responses. Construction and Building Materials, 2015, 77, 20-32.	7.2	42
32	Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cement and Concrete Research, 2015, 67, 74-92.	11.0	95
33	Evaluation of the stiffness damage test (SDT) as a tool for assessing damage in concrete due to ASR: Test loading and output responses for concretes incorporating fine or coarse reactive aggregates. Cement and Concrete Research, 2014, 56, 213-229.	11.0	64
34	Comparative study of a chemo–mechanical modeling for alkali silica reaction (ASR) with experimental evidences. Construction and Building Materials, 2014, 72, 301-315.	7.2	31
35	Reliability of the Damage Rating Index to Assess Condition of Concrete Affected by External Sulfate Attack. Magazine of Concrete Research, 0, , 1-35.	2.0	1