Cuicui Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568190/publications.pdf Version: 2024-02-01

Сшешь

#	Article	IF	CITATIONS
1	Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries. Chemical Engineering Journal, 2022, 428, 131283.	12.7	43
2	Facilitating Mg2+ diffusion in high potential LixV2(PO4)3 cathode material with a co-insertion strategy for rechargeable Mg-ion batteries. Journal of Power Sources, 2022, 520, 230853.	7.8	10
3	Regulating the electro-deposition behavior of Fe metal anode and the applications in rechargeable aqueous iron-iodine batteries. Chemical Engineering Journal, 2022, 432, 134389.	12.7	12
4	Enabling Reversible MnO ₂ /Mn ²⁺ Transformation by Al ³⁺ Addition for Aqueous Zn–MnO ₂ Hybrid Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10526-10534.	8.0	20
5	The back-deposition of dissolved Mn ²⁺ to MnO ₂ cathodes for stable cycling in aqueous zinc batteries. Chemical Communications, 2022, 58, 4845-4848.	4.1	3
6	The energy storage behavior of a phosphate-based cathode material in rechargeable zinc batteries. Chemical Communications, 2021, 57, 6253-6256.	4.1	10
7	A Manganese Phosphate Cathode for Long‣ife Aqueous Energy Storage. Advanced Functional Materials, 2021, 31, 2100477.	14.9	31
8	The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chemical Engineering Journal, 2021, 419, 129659.	12.7	35
9	Heterojunction induced activation of iron oxide anode for high-power aqueous batteries. Chemical Engineering Journal, 2020, 400, 125874.	12.7	21
10	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie, 2019, 131, 16203-16207.	? 2.0	6
11	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie - International Edition, 2019, 58, 16057-16061.	13.8	125
12	Lithium Batteries: Single-Ion Conducting Electrolyte Based on Electrospun Nanofibers for High-Performance Lithium Batteries (Adv. Energy Mater. 10/2019). Advanced Energy Materials, 2019, 9, 1970029.	19.5	2
13	Singleâ€lon Conducting Electrolyte Based on Electrospun Nanofibers for Highâ€Performance Lithium Batteries. Advanced Energy Materials, 2019, 9, 1803422.	19.5	109
14	Semi-interpenetrating polymer networks toward sulfonated poly(ether ether ketone) membranes for high concentration direct methanol fuel cell. Chinese Chemical Letters, 2019, 30, 299-304.	9.0	19
15	Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells. Journal of Materials Science, 2018, 53, 5501-5510.	3.7	28
16	Investigation of Diamine Crossâ€Linker on Semiâ€ŀPNs of BPPO/SPEEK Membranes for Direct Methanol Fuel Cell. Energy Technology, 2018, 6, 2264-2272.	3.8	19
17	Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. International Journal of Hydrogen Energy, 2017, 42, 10275-10284.	7.1	72
18	A robust pendant-type cross-linked anion exchange membrane (AEM) with high hydroxide conductivity at a moderate IEC value. Journal of Materials Science, 2017, 52, 3946-3958.	3.7	10

Cuicui Li

#	Article	IF	CITATIONS
19	Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity. RSC Advances, 2016, 6, 79593-79601.	3.6	20
20	Semi-Interpenetrating Polymer Network Membranes from SPEEK and BPPO for High Concentration DMFC. ACS Applied Energy Materials, 0, , .	5.1	4