Carsten Bonnekoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568146/publications.pdf

Version: 2024-02-01

933447 996975 15 450 10 15 citations h-index g-index papers 15 15 15 257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of neutron irradiation on ductility of tungsten foils developed for tungsten-copper laminates. Nuclear Materials and Energy, 2022, 30, 101133.	1.3	3
2	Comparison of K-doped and pure cold-rolled tungsten sheets: Tensile properties and brittle-to-ductile transition temperatures. Journal of Nuclear Materials, 2021, 544, 152664.	2.7	19
3	Technological Processes for Steel Applications in Nuclear Fusion. Applied Sciences (Switzerland), 2021, 11, 11653.	2.5	9
4	Recrystallisation towards a single texture component in heavily cold rolled tungsten (W) sheets and its impact on micromechanics. International Journal of Refractory Metals and Hard Materials, 2020, 86, 105084.	3.8	10
5	The brittle-to-ductile transition in cold-rolled tungsten sheets: On the loss of room-temperature ductility after annealing and the phenomenon of 45° embrittlement. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105347.	3.8	11
6	The brittle-to-ductile transition in cold-rolled tungsten sheets: Contributions of grain and subgrain boundaries to the enhanced ductility after pre-deformation. Nuclear Materials and Energy, 2020, 25, 100769.	1.3	4
7	The brittle-to-ductile transition in cold-rolled tungsten sheets: the rate-limiting mechanism of plasticity controlling the BDT in ultrafine-grained tungsten. Journal of Materials Science, 2020, 55, 12314-12337.	3.7	18
8	Elucidating the microstructure of tungsten composite materials produced by powder injection molding. Nuclear Materials and Energy, 2020, 24, 100766.	1.3	3
9	Comparison of K-doped and pure cold-rolled tungsten sheets: As-rolled condition and recrystallization behaviour after isochronal annealing at different temperatures. International Journal of Refractory Metals and Hard Materials, 2019, 85, 105047.	3.8	30
10	The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature. International Journal of Refractory Metals and Hard Materials, 2019, 78, 146-163.	3.8	34
11	The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to â^' 65 °C. International Journal of Refractory Metals and Hard Materials, 2018, 71, 181-189.	3.8	63
12	Ductilisation of tungsten (W): Tungsten laminated composites. International Journal of Refractory Metals and Hard Materials, 2017, 69, 66-109.	3.8	57
13	Ductilisation of tungsten (W): On the increase of strength AND room-temperature tensile ductility through cold-rolling. International Journal of Refractory Metals and Hard Materials, 2017, 64, 261-278.	3 . 8	52
14	Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling. International Journal of Refractory Metals and Hard Materials, 2016, 54, 351-369.	3.8	97
15	Ductilisation of tungsten (W) through cold-rolling: R-curve behaviour. International Journal of Refractory Metals and Hard Materials, 2016, 58, 22-33.	3.8	40