Haitao Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3568000/publications.pdf

Version: 2024-02-01

Ηλιτλο ΖΗλο

#	Article	IF	CITATIONS
1	Co-regulation of dispersion, exposure and defect sites on CeO2 (111) surface for catalytic oxidation of Hg0. Journal of Hazardous Materials, 2022, 424, 126566.	12.4	15
2	Mn doped CeO2-MoO3/γ-Al2O3 catalysts for the enhanced adsorption and catalytic oxidation of HgO in oxygen atmosphere. Applied Surface Science, 2022, 581, 152327.	6.1	5
3	Enhancing Communication Reliability from the Semantic Level under Low SNR. Electronics (Switzerland), 2022, 11, 1358.	3.1	2
4	Reliable Semantic Communication System Enabled by Knowledge Graph. Entropy, 2022, 24, 846.	2.2	17
5	Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. Small, 2022, 18, .	10.0	19
6	The relationship of morphology and catalytic performance of CeO2 catalysts for reducing nitrobenzene to azoxybenzene under the base-free condition. Chinese Chemical Letters, 2021, 32, 761-764.	9.0	5
7	A recent trend: application of graphene in catalysis. Carbon Letters, 2021, 31, 177-199.	5.9	56
8	The influence of lignocellulose on biomass pyrolysis product distribution and economics via steady state process simulation. Journal of Analytical and Applied Pyrolysis, 2021, 158, 104968.	5.5	20
9	N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Applied Surface Science, 2021, 542, 148556.	6.1	37
10	The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Reports Physical Science, 2021, 2, 100482.	5.6	26
11	Application of Machine Learning in Industrial Boilers: Fault Detection, Diagnosis, and Prognosis. ChemBioEng Reviews, 2021, 8, 535-544.	4.4	7
12	Stabilized CO2 reforming of CH4 on modified Ni/Al2O3 catalysts via in-situ K2CO3-enabled dynamic coke elimination reaction. Fuel, 2021, 298, 120599.	6.4	19
13	Variational Sparse Bayesian Learning for Estimation of Gaussian Mixture Distributed Wireless Channels. Entropy, 2021, 23, 1268.	2.2	0
14	MoO3-adjusted Î-MnO2 nanosheet for catalytic oxidation of HgO to Hg2+. Applied Catalysis B: Environmental, 2020, 263, 117829.	20.2	59
15	Catalytic oxidation of Hg0 with O2 induced by synergistic coupling of CeO2 and MoO3. Journal of Hazardous Materials, 2020, 381, 121037.	12.4	16
16	Field test of SO3 removal in ultra-low emission coal-fired power plants. Environmental Science and Pollution Research, 2020, 27, 4746-4755.	5.3	17
17	P-Doped graphene toward enhanced electrocatalytic N ₂ reduction. Chemical Communications, 2020, 56, 1831-1834.	4.1	67
18	Self-Powered Wireless Sensor Node Based on Rotational Triboelectric Nanogenerator. , 2020, , .		0

ΗΑΙΤΑΟ ΖΗΑΟ

#	Article	IF	CITATIONS
19	Solid Nanoporosity Governs Catalytic CO ₂ and N ₂ Reduction. ACS Nano, 2020, 14, 7734-7759.	14.6	59
20	A real-time optimization method for economic and effective operation of electrostatic precipitators. Journal of the Air and Waste Management Association, 2020, 70, 708-720.	1.9	0
21	Identifying the Origin of Ti ³⁺ Activity toward Enhanced Electrocatalytic N ₂ Reduction over TiO ₂ Nanoparticles Modulated by Mixedâ€Valent Copper. Advanced Materials, 2020, 32, e2000299.	21.0	278
22	Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14498-14505.	10.3	66
23	Fast Evolution of Sulfuric Acid Aerosol Activated by External Fields for Enhanced Emission Control. Environmental Science & Technology, 2020, 54, 3022-3031.	10.0	23
24	The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and Treatment. International Journal of Environmental Research and Public Health, 2020, 17, 2323.	2.6	178
25	Investigation of Arsenic Poisoned Selective Catalytic Reduction Catalyst Performance and Lifetime in Coal-Fired Power Plants. Energy & Fuels, 2020, 34, 12833-12840.	5.1	10
26	Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnology Reviews, 2020, 9, 1284-1314.	5.8	72
27	Synthesis of Zeolites from Coal Fly Ash for Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research, 2020, 20, 1127-1144.	2.1	57
28	Promotion effect of KOH surface etching on sucrose-based hydrochar for acetone adsorption. Applied Surface Science, 2019, 496, 143617.	6.1	26
29	Development of Pdn/g-C3N4 adsorbent for Hg0 removal – DFT study of influences of the support and Pd cluster size. Fuel, 2019, 254, 115537.	6.4	32
30	A perspective on the applications of energy-cyber-physical systems (e-CPSs) in ultra-low emission coal-fired power plants. Energy Procedia, 2019, 158, 6139-6144.	1.8	6
31	CeO2 based catalysts for elemental mercury capture. Energy Procedia, 2019, 158, 4635-4640.	1.8	2
32	Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach. Applied Energy, 2019, 254, 113554.	10.1	21
33	Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials. Applied Energy, 2019, 254, 113651.	10.1	21
34	Mechanism of Hg ⁰ and O ₂ Interaction on the IrO ₂ (110) Surface: A Density Functional Theory Study. Energy & Fuels, 2019, 33, 1354-1362.	5.1	16
35	Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition. Journal of Hazardous Materials, 2019, 371, 156-164.	12.4	57
36	A comparative study of mechanisms of the adsorption of CO ₂ confined within graphene–MoS ₂ nanosheets: a DFT trend study. Nanoscale Advances, 2019, 1, 1442-1451.	4.6	22

ΗΑΙΤΑΟ ΖΗΑΟ

#	Article	lF	CITATIONS
37	Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts. Applied Catalysis B: Environmental, 2019, 245, 743-752.	20.2	113
38	Structural defects in 2D MoS2 nanosheets and their roles in the adsorption of airborne elemental mercury. Journal of Hazardous Materials, 2019, 366, 240-249.	12.4	107
39	Promotional effect of doping Cu into cerium-titanium binary oxides catalyst for deep oxidation of gaseous dichloromethane. Chemosphere, 2019, 214, 553-562.	8.2	35
40	An Investigation of SO3 Control Routes in Ultra-low Emission Coal-fired Power Plants. Aerosol and Air Quality Research, 2019, 9, 2908-2916.	2.1	13
41	Integrated Dynamic and Steady State Method and Its Application on the Screening of MoS ₂ Nanosheet-Containing Adsorbents for Hg ⁰ Capture. Energy & Fuels, 2018, 32, 5338-5344.	5.1	29
42	Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach. Applied Energy, 2018, 227, 190-197.	10.1	56
43	Adopting Big Data to Accelerate Discovery of 2D TMDCs Materials via CVR Method for the Potential Application in Urban Airborne HgO Sensor. Energy Procedia, 2018, 152, 847-852.	1.8	3
44	Speciation and Thermal Stability of Mercury in Solid Products from Ultralow Emission Air Pollution Control Devices. Energy & Fuels, 2018, 32, 12655-12664.	5.1	10
45	Hg 0 Capture over MoS 2 Nanosheets Containing Adsorbent: Effects of Temperature, Space Velocity, and Other Gas Species. Energy Procedia, 2017, 105, 4408-4413.	1.8	6
46	Partitioning of Hazardous Trace Elements among Air Pollution Control Devices in Ultra-Low-Emission Coal-Fired Power Plants. Energy & Fuels, 2017, 31, 6334-6344.	5.1	50
47	Microwave-induced activation of additional active edge sites on the MoS 2 surface for enhanced Hg 0 capture. Applied Surface Science, 2017, 420, 439-445.	6.1	25
48	Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants. Applied Energy, 2017, 207, 254-264.	10.1	64
49	Speciation Characteristics and Mobility of Trace Elements Across Ultralow Emission Air Pollution Control Devices. Energy & amp; Fuels, 2017, 31, 13963-13971.	5.1	25
50	Recovery of Elemental Mercury from Coal-derived Flue Gas using a MoS 2 -based Material. Energy Procedia, 2017, 142, 3584-3589.	1.8	3
51	Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things. Sensors, 2017, 17, 2479.	3.8	8
52	Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture. Fuel, 2016, 181, 1089-1094.	6.4	30
53	Hg ⁰ Capture over CoMoS/l³-Al ₂ O ₃ with MoS ₂ Nanosheets at Low Temperatures. Environmental Science & Technology, 2016, 50, 1056-1064.	10.0	157
54	Screening of Metal Oxidesfor Hg0Capture. Energy Procedia, 2015, 75, 2421-2426.	1.8	21

#	Article	IF	CITATIONS
55	Recovery of elemental sulphur via selective catalytic reduction of SO 2 over sulphided CoMo/γ-Al 2 O 3 catalysts. Fuel, 2015, 147, 67-75.	6.4	60
56	The Effect of Biomass on Fluidity Development in Coking Blends Using High-Temperature SAOS Rheometry. Energy & Fuels, 2012, 26, 1767-1775.	5.1	45