Zhen-Guo Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567849/publications.pdf

Version: 2024-02-01

1040056 996975 46 324 9 15 citations h-index g-index papers 46 46 46 430 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Quantum Interference Effects in Quantum Dot Molecular With Majorana Bound States. Frontiers in Physics, $2021,8,\ldots$	2.1	4
2	Thermoelectric Transport in a Double-Quantum-Dot Coupled to Majorana Zero Modes. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 753-761.	0.5	1
3	Molecular dynamics investigation of the stopping power of warm dense hydrogen for electrons. Physical Review E, 2021, 103, 063215.	2.1	4
4	Spin Seebeck Effect in a Hybridized Quantum-Dot/Majorana-Nanowire With Spin Heat Accumulation. Frontiers in Physics, 2021, 9, .	2.1	2
5	Increase in Axial Compressibility in a Spinning Van der Waals Gas. Entropy, 2021, 23, 137.	2.2	0
6	First-principles method for x-ray Thomson scattering including both elastic and inelastic features in warm dense matter. Physical Review B, 2020, 102, .	3.2	6
7	Stopping power of hot dense deuterium-tritium plasmas mixed with impurities to charged particles. Physical Review E, 2020, 101, 053209.	2.1	5
8	Large enhancement of thermoelectric effect by Majorana bound states coupled to a quantum dot. Journal of Applied Physics, 2020, 127, .	2. 5	17
9	Thermoelectric Effect in a Correlated Quantum Dot Side-Coupled to Majorana Bound States. Nanoscale Research Letters, 2020, 15, 79.	5.7	22
10	Strongly Compressed Few-Layered SnSe ₂ Films Grown on a SrTiO ₃ Substrate: The Coexistence of Charge Ordering and Enhanced Interfacial Superconductivity. Nano Letters, 2019, 19, 5304-5312.	9.1	32
11	Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases*. Chinese Physics B, 2019, 28, 107305.	1.4	1
12	Selective trapping of hexagonally warped topological surface states in a triangular quantum corral. Science Advances, 2019, 5, eaaw3988.	10.3	6
13	Spin Seebeck Effect in a Multiple Quantum Dot Molecule with Spin-Dependent Interdot Coupling. Journal of Low Temperature Physics, 2019, 194, 235-245.	1.4	7
14	Spin-Polarized Transport and Spin Seebeck Effect in Triple Quantum Dots with Spin-Dependent Interdot Couplings. Nanoscale Research Letters, 2018, 13, 358.	5.7	5
15	First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter. Physical Review Letters, 2018, 120, 205002.	7.8	20
16	Mean-field state population study for iron-based superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 808-812.	2.1	0
17	Structural and transport properties of ammonia along the principal Hugoniot. Scientific Reports, 2017, 7, 12338.	3.3	7
18	Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections. Physics of Plasmas, 2017, 24, 112710.	1.9	10

#	Article	IF	Citations
19	Doping stability and charge-density-wave transition of strained 1T-TiSe ₂ . Europhysics Letters, 2017, 120, 17006.	2.0	6
20	Energy loss of tens keV charged particles traveling in the hot dense carbon plasma. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	0
21	Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas. Physical Review E, 2016, 94, 063203.	2.1	7
22	Nuclear-plus-interference-scattering effect on the energy deposition of multi-MeV protons in a dense Be plasma. Physical Review E, 2016, 94, 033205.	2.1	0
23	Modulation of doping and biaxial strain on the transition temperature of the charge density waveAtransition in 1T-TiSe ₂ . RSC Advances, 2016, 6, 76972-76979.	3. 6	20
24	Generalized Lenard-Balescu calculations of electron-ion temperature relaxation in beryllium plasma. Physical Review E, 2015, 92, 033103.	2.1	7
25	Dirac electron-hole pairing gap in the heterostructure of ultra-thin films of topological insulator bilayer. Europhysics Letters, 2015, 110, 57002.	2.0	0
26	Theoretical studies on the stopping power of deuterium-tritium mixed with uranium plasmas for \hat{l}_{\pm} particles. Physics of Plasmas, 2014, 21, 102307.	1.9	8
27	Energy relaxation of multi-MeV protons traveling in compressed DT+Be plasmas. Physics of Plasmas, 2014, 21, .	1.9	8
28	Anisotropic Fabry-PÃ@rot resonant states confined within nano-steps on the topological insulator surface. Scientific Reports, 2014, 4, 5544.	3.3	5
29	Multiple scattering theory for massive Dirac fermions on the topological insulator surface with a strong warping effect. Physical Review B, 2013, 88, .	3.2	1
30	Pseudomagnetoexcitons in strained graphene bilayers without external magnetic fields. Physical Review B, 2013, 87, .	3.2	1
31	Fractional quantum Hall effect of topological surface states under a strong tilted magnetic field. Europhysics Letters, 2013, 103, 27001.	2.0	3
32	The effect of the warping term on the fractional quantum Hall states in topological insulators. Progress of Theoretical and Experimental Physics, 2013, 2013, .	6.6	0
33	Excitonic condensation for the surface states of topological insulator bilayers. New Journal of Physics, 2012, 14, 063010.	2.9	9
34	Tunable Dirac cone in the rectangular symmetrical semiconductor quantum dots array. Applied Physics Letters, 2012, 101, .	3.3	10
35	Probing crossover from analogous weak antilocalization to localization by an Aharonov-Bohm interferometer on topological insulator surface. Applied Physics Letters, 2012, 100, 133103.	3.3	2
36	Theory of multiple magnetic scattering for quasiparticles on a gapless topological insulator surface. Physical Review B, 2012, 85, .	3.2	4

#	Article	IF	CITATIONS
37	Superfluidity and effective mass of magnetoexcitons in topological insulator bilayers: Effect of inter-Landau-level Coulomb interaction. Europhysics Letters, 2012, 98, 47002.	2.0	O
38	Quasiparticle states and quantum interference induced by magnetic impurities on a two-dimensional topological superconductor. Journal of Physics Condensed Matter, 2012, 24, 145502.	1.8	7
39	Magnetoexcitons and optical absorption of bilayer-structured topological insulators. Applied Physics Letters, 2012, 100, 161602.	3.3	4
40	Orbital magnetization of the electron gas on a two-dimensional kagom \tilde{A} © lattice under a perpendicular magnetic field. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1791-1797.	5.1	2
41	Aharonov-Bohm oscillations in the local density of topological surface states. Applied Physics Letters, 2011, 99, .	3.3	13
42	Quantum corrals and quantum mirages on the surface of a topological insulator. Physical Review B, 2011, 84, .	3.2	14
43	Multiple scattering theory of quasiparticles on a topological insulator surface. Applied Physics Letters, 2011, 99, 232109.	3.3	4
44	Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field. Chinese Physics B, 2011, 20, 058103.	1.4	9
45	Magnetic quantum oscillations for the surface states of topological insulator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>c/mml:mn</td><td>></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	c/mml:mn	>
46	Prediction of semiconducting ferromagnetic CrVI(6) monolayer. Europhysics Letters, 0, , .	2.0	0