Ulrike Alexiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567603/publications.pdf Version: 2024-02-01

LIDIKE ALEXIEV

#	Article	IF	CITATIONS
1	Simulation of Fluorescence Anisotropy Experiments: Probing Protein Dynamics. Biophysical Journal, 2005, 89, 3757-3770.	0.5	128
2	Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges?. Journal of Controlled Release, 2016, 242, 3-15.	9.9	116
3	Interactions of Hyaluronic Acid with the Skin and Implications for the Dermal Delivery of Biomacromolecules. Molecular Pharmaceutics, 2015, 12, 1391-1401.	4.6	97
4	Differential Peptide Dynamics Is Linked to Major Histocompatibility Complex Polymorphism. Journal of Biological Chemistry, 2004, 279, 28197-28201.	3.4	82
5	Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18690-18695.	7.1	80
6	Penetration of silver nanoparticles into porcine skin <i>ex vivo</i> using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. Journal of Biomedical Optics, 2014, 20, 051006.	2.6	79
7	Penetration of normal, damaged and diseased skin — An in vitro study on dendritic core–multishell nanotransporters. Journal of Controlled Release, 2014, 185, 45-50.	9.9	79
8	Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein Journal of Nanotechnology, 2015, 6, 263-280.	2.8	77
9	Fluorescence spectroscopy of rhodopsins: Insights and approaches. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 694-709.	1.0	70
10	Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. Journal of Physical Chemistry B, 2017, 121, 47-57.	2.6	56
11	Covalently Bound pH-Indicator Dyes at Selected Extracellular or Cytoplasmic Sites in Bacteriorhodopsin. 2. Rotational Orientation of Helixes D and E and Kinetic Correlation between M Formation and Proton Release in Bacteriorhodopsin Micelles. Biochemistry, 1994, 33, 13693-13699.	2.5	50
12	Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1571-1581.	3.3	48
13	Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 39-46.	4.3	48
14	Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 111-124.	4.3	39
15	Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules, 2017, 22, 17.	3.8	34
16	Natural MHC Class I Polymorphism Controls the Pathway of Peptide Dissociation from HLA-B27 Complexes. Biophysical Journal, 2007, 93, 2743-2755.	0.5	33
17	Nanodynamics of Dendritic Core–Multishell Nanocarriers. Langmuir, 2014, 30, 1686-1695.	3.5	33
18	Picosecond Multidimensional Fluorescence Spectroscopy: A Tool to Measure Real-time Protein Dynamics During Functionâ€. Photochemistry and Photobiology, 2007, 83, 378-385.	2.5	32

Ulrike Alexiev

#	Article	IF	CITATIONS
19	Activation and molecular recognition of the GPCR rhodopsin – Insights from time-resolved fluorescence depolarisation and single molecule experiments. European Journal of Cell Biology, 2012, 91, 300-310.	3.6	26
20	Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements. Molecules, 2016, 21, 22.	3.8	26
21	Stratum corneum targeting by dendritic core-multishell-nanocarriers in a mouse model of psoriasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 317-327.	3.3	26
22	Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics, 2020, 10, 6322-6336.	10.0	25
23	Monitoring the Interaction of a Single G-Protein Key Binding Site with Rhodopsin Disk Membranes upon Light Activation. Biochemistry, 2009, 48, 3801-3803.	2.5	23
24	Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging. Small, 2018, 14, e1800310.	10.0	23
25	Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 110, 31-38.	4.3	22
26	Molecular Determinants of Major Histocompatibility Complex Class I Complex Stability. Journal of Biological Chemistry, 2008, 283, 23093-23103.	3.4	20
27	Application of Single Molecule Fluorescence Microscopy to Characterize the Penetration of a Large Amphiphilic Molecule in the Stratum Corneum of Human Skin. International Journal of Molecular Sciences, 2015, 16, 6960-6977.	4.1	20
28	Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin. Nanoscale Research Letters, 2017, 12, 64.	5.7	20
29	Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. Journal of Controlled Release, 2019, 299, 138-148.	9.9	19
30	Pitfalls in using fluorescence tagging of nanomaterials: tectoâ€dendrimers in skin tissue as investigated by Clusterâ€FLIM. Annals of the New York Academy of Sciences, 2017, 1405, 202-214.	3.8	18
31	Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. Journal of Biophotonics, 2018, 11, e201700169.	2.3	18
32	Net Proton Uptake Is Preceded by Multiple Proton Transfer Steps upon Electron Injection into Cytochrome c Oxidase. Journal of Biological Chemistry, 2012, 287, 8187-8193.	3.4	17
33	Dissection of Environmental Changes at the Cytoplasmic Surface of Lightâ€activated Bacteriorhodopsin and Visual Rhodopsin: Sequence of Spectrally Silent Steps ^{â€} . Photochemistry and Photobiology, 2009, 85, 570-577.	2.5	14
34	Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 149-154.	4.3	14
35	Functional interaction structures of the photochromic retinal protein rhodopsin. Photochemical and Photobiological Sciences, 2010, 9, 226-233.	2.9	12
36	Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2. Journal of Biological Chemistry, 2016, 291, 17382-17393.	3.4	12

Ulrike Alexiev

#	Article	IF	CITATIONS
37	Surface Charge Changes upon Formation of the Signaling State in Visual Rhodopsin ^{â€} . Photochemistry and Photobiology, 2009, 85, 501-508.	2.5	11
38	Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: Surface charge, buffer capacity and redox-dependent polarity changes at the internal surface. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 276-284.	1.0	11
39	Temperature and environment dependent dynamic properties of a dendritic polyglycerol sulfate. Polymers for Advanced Technologies, 2014, 25, 1329-1336.	3.2	11
40	Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles – Composition-dependent skin penetration enhancement of a dye probe and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 66-75.	4.3	11
41	Kinetics of Lightâ€Induced Intramolecular Charge Transfer and Proton Release in Bacteriorhodopsin. Israel Journal of Chemistry, 1995, 35, 401-414.	2.3	10
42	Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials, 2018, 162, 60-70.	11.4	10
43	A multilayered epithelial mucosa model of head neck squamous cell carcinoma for analysis of tumor-microenvironment interactions and drug development. Biomaterials, 2020, 258, 120277.	11.4	9
44	Expanding the Scope of Reporting Nanoparticles: Sensing of Lipid Phase Transitions and Nanoviscosities in Lipid Membranes. Langmuir, 2019, 35, 11422-11434.	3.5	8
45	Improved fluorescent phytochromes for in situ imaging. Scientific Reports, 2022, 12, 5587.	3.3	8
46	White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake. Zeitschrift Fur Physikalische Chemie, 2018, 232, 671-688.	2.8	7
47	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 14938-14944.	13.8	7
48	The redox-coupled proton-channel opening in cytochrome <i>c</i> oxidase. Chemical Science, 2020, 11, 3804-3811.	7.4	6
49	Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry, 2020, 59, 1051-1062.	2.5	6
50	4,5-Bis(arylethynyl)-1,2,3-triazoles—A New Class of Fluorescent Labels: Synthesis and Applications. Molecules, 2022, 27, 3191.	3.8	5
51	A Dual Fluorescence–Spin Label Probe for Visualization and Quantification of Target Molecules in Tissue by Multiplexed FLIM–EPR Spectroscopy. Angewandte Chemie, 2021, 133, 15065-15071.	2.0	2
52	Oxidative Stress Imaging: Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging (Small 23/2018). Small, 2018, 14, 1870106.	10.0	1
53	Electronationâ€dependent structural change at the proton exit side of cytochrome c oxidase as revealed by siteâ€directed fluorescence labeling. FEBS Journal, 2020, 287, 1232-1246.	4.7	1