Yong-Gang Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3567306/yong-gang-wang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31,821 166 386 96 h-index g-index citations papers 37,467 7.85 405 11.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
386	Industrial scale production of fibre batteries by a solution-extrusion method <i>Nature Nanotechnology</i> , 2022 ,	28.7	20
385	Building low-temperature batteries: non-aqueous or aqueous electrolyte?. <i>Current Opinion in Electrochemistry</i> , 2022 , 100949	7.2	1
384	Sodium-ion Battery with a Wide Operation-Temperature Range from -70 to 100 LC <i>Angewandte Chemie - International Edition</i> , 2022 , e202116930	16.4	3
383	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries 2022 , 4, 190-204		4
382	Hierarchical Sulfide-Rich Modification Layer on SiO/C Anode for Low-Temperature Li-Ion Batteries <i>Advanced Science</i> , 2022 , e2104531	13.6	4
381	Pd Doped CoO Loaded on Carbon Nanofibers as Highly Efficient Free-Standing Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions <i>Frontiers in Chemistry</i> , 2021 , 9, 812375	5	
3 80	Progress and Prospects in Redox Mediators for Highly Reversible Lithium Dxygen Batteries: A Minireview. <i>Energy & Dxystallow</i> , 2021, 35, 19302-19319	4.1	1
379	Towards High Performance Li-S Batteries via Sulfonate-Rich COF-Modified Separator. <i>Advanced Materials</i> , 2021 , e2105178	24	34
378	Promoting Rechargeable Batteries Operated at Low Temperature. <i>Accounts of Chemical Research</i> , 2021 , 54, 3883-3894	24.3	25
377	Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. <i>Plant Biotechnology Journal</i> , 2021 ,	11.6	1
376	Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9610-9617	16.4	29
375	Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes. <i>Angewandte Chemie</i> , 2021 , 133, 9696-9703	3.6	5
374	A universal method for rapid identification of alfalfa and burr medic seeds with an emphasis on discriminating different forage species. <i>Grass and Forage Science</i> , 2021 , 76, 353-362	2.3	
373	Mechanochemical Synthesis of Pt/NbCT MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. <i>Materials</i> , 2021 , 14,	3.5	5
372	Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. <i>Nano Energy</i> , 2021 , 83, 105847	17.1	29
371	Direct View on the Origin of High Li+ Transfer Impedance in All-Solid-State Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2103971	15.6	5
370	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. <i>Small Structures</i> , 2021 , 2, 2100069	8.7	6

(2021-2021)

Decoupled amphoteric water electrolysis and its integration with MnIn battery for flexible utilization of renewables. <i>Energy and Environmental Science</i> , 2021 , 14, 883-889	35.4	15	
Ultrathin Silicon Nanolayer Implanted NixSi/Ni Nanoparticles as Superlong-Cycle Lithium-Ion Anode Material. <i>Small Structures</i> , 2021 , 2, 2000126	8.7	10	
The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. <i>Plant Biotechnology Journal</i> , 2021 , 19, 532-547	11.6	10	
Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries. <i>ACS Central Science</i> , 2021 , 7, 335-344	16.8	9	
Topology design of digital metamaterials for ultra-compact integrated photonic devices based on mode manipulation. <i>Nanoscale Advances</i> , 2021 , 3, 4579-4588	5.1	1	
Mechanism-of-Action Elucidation of Reversible Li-CO Batteries Using the Water-in-Salt Electrolyte. <i>ACS Applied Materials & Damp; Interfaces</i> , 2021 , 13, 7396-7404	9.5	9	
Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO4F Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3223-3231	8.3	8	
Green Synthesis and Optimization of 3D Nitrogen-Doped Carbon Network via Biomass Waste for Highly Efficient Bisphenol S Adsorption. <i>ChemistrySelect</i> , 2021 , 6, 6348-6352	1.8	O	
A High-Voltage ZnDrganic Battery Using a Nonflammable Organic Electrolyte. <i>Angewandte Chemie</i> , 2021 , 133, 21193-21200	3.6	О	
A High-Voltage Zn-Organic Battery Using a Nonflammable Organic Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21025-21032	16.4	15	
Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. <i>Angewandte Chemie</i> , 2021 , 133, 25828	3.6	8	
Molecular Tailoring of an n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20826-20832	16.4	13	
Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25624-25638	16.4	17	
Molecular Tailoring of an n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 20994-21000	3.6	5	
Chemically Self-Charging Aqueous Zinc-Organic Battery. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15369-15377	16.4	16	
A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature. <i>Angewandte Chemie</i> , 2021 , 133, 24051	3.6	2	
Scalable production of high-performing woven lithium-ion fibre batteries. <i>Nature</i> , 2021 , 597, 57-63	50.4	69	
A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23858-23862	16.4	8	
	Ultrathin Silicon Nanolayer Implanted NixSi/Ni Nanoparticles as Superlong-Cycle Lithium-Ion Anode Material. Small Structures, 2021, 2, 2000126 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries. ACS Central Science, 2021, 7, 335-344 Topology design of digital metamaterials for ultra-compact integrated photonic devices based on mode manipulation. Nanoscale Advances, 2021, 3, 4579-4588 Mechanism-of-Action Elucidation of Reversible Li-CO Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Despired Materials & D	Ultrathin Silicon Nanolayer Implanted Nix5i/Ni Nanoparticles as Superlong-Cycle Lithium-Ion Anode Material. Small Structures, 2021, 2, 2000126 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic Flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries. ACS Central Science, 2021, 7, 335-344 16.8 Mechanism-of-Action Elucidation of Reversible Li-CO Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Samp: Interfaces, 2021, 3, 4579-4588 Mechanism-of-Action Elucidation of Reversible Li-CO Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Samp: Interfaces, 2021, 13, 7396-7404 Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO4F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231 Green Synthesis and Optimization of 3D Nitrogen-Doped Carbon Network via Blomass Waste for Highly Efficient Bisphenol S Adsorption. Chemistry Select. 2021, 6, 6348-6352 A High-Voltage Zn-Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie, 2021, 133, 21193-21200 A High-Voltage Zn-Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie International Edition, 2021, 60, 21025-21032 Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 20826-20832 Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 20826-20832 Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 20826-20832 Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie, 1021, 133, 2094-2100 Chemically Self-Charging Aqueous Zinc-Organ	Ultrathin Silicon Nanolayer Implanted NixSi/Ni Nanoparticles as Superlong-Cycle Lithium-Ion Anode Material. Small Structures, 2021, 2, 2000126 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 2021, 19, 532-547 The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differential flower displant flowers. Plant Science, 2021, 13, 7396-7404 Topology design of digital metamaterials for ultra-compact integrated photonic devices based on mode manipulation. Annoscale Advances, 2021, 3, 4579-4588 Mechanism-of-Action Elucidation of Reversible LFCO Batteries Using the Water-in-Salt Electrolyte. Ps. 455 Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO4F Cathode. ACS Sustainable Chemistry and Engineering, 2021, 9, 3223-3231 Green Synthesis and Optimization of 3D Nitrogen-Doped Carbon Network via Biomass Waste for High-Voltage Aqueous Zinc Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie High-Voltage ZnDrganic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie -International Edition, 2021, 60, 21025-21032 Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie -International Edition, 2021, 60, 256524-25638 Molecular Tailoring of an n/p-type Phenothiazine Orga

351	Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from -60 to +55 °C. ACS Applied Materials & Interfaces, 2021, 13, 45630-45638	9.5	2
350	An all-climate CFx/Li battery with mechanism-guided electrolyte. <i>Energy Storage Materials</i> , 2021 , 42, 477-483	19.4	11
349	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. <i>Chemical Engineering Journal</i> , 2021 , 425, 130660	14.7	7
348	Aqueous rechargeable zinc batteries: Challenges and opportunities. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100801	7.2	3
347	Ammonium-ion batteries with a wide operating temperature window from 40 to 80 °C. EScience, 2021 , 1, 212-218		8
346	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. <i>Energy and Environmental Science</i> , 2020 , 13, 2124-2133	35.4	20
345	In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. <i>Energy and Environmental Science</i> , 2020 , 13, 2200-2208	35.4	41
344	Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. <i>Chemical Communications</i> , 2020 , 56, 8257-8260	5.8	7
343	Zinc-Organic Battery with a Wide Operation-Temperature Window from -70 to 150 °C. Angewandte Chemie - International Edition, 2020 , 59, 14577-14583	16.4	65
342	ZincDrganic Battery with a Wide Operation-Temperature Window from 🛭 0 to 150 LC. <i>Angewandte Chemie</i> , 2020 , 132, 14685-14691	3.6	28
341	A High-Rate and Long-Life Rechargeable Battery Operated at 🛭 5 oC. <i>Batteries and Supercaps</i> , 2020 , 3, 1016-1020	5.6	11
340	Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. <i>Advanced Science</i> , 2020 , 7, 2000196	13.6	45
339	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long-Life Aqueous Zinc-Organic Batteries. <i>Advanced Materials</i> , 2020 , 32, e2000338	24	89
338	Energizing hybrid supercapacitors by using Mn2+-based active electrolyte. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15051-15057	13	8
337	Garnet-Based All-Ceramic Lithium Battery Enabled by LiBOCl Solder. <i>IScience</i> , 2020 , 23, 101071	6.1	11
336	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. <i>ChemSusChem</i> , 2020 , 13, 2160-2185	8.3	59
335	Intercalation Pseudocapacitive Nanoscale Nickel [email[protected] Nanotubes as a High-Rate Cathode Material for Aqueous Sodium-Ion Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3655-3663	8.3	19
334	An organic/inorganic electrode-based hydronium-ion battery. <i>Nature Communications</i> , 2020 , 11, 959	17.4	65

(2020-2020)

333	An aqueous manganeselead battery for large-scale energy storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5959-5967	13	10
332	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. <i>CheM</i> , 2020 , 6, 968-984	16.2	124
331	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1908528	15.6	239
330	Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5346-5349	16.4	22
329	Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. <i>Journal of Power Sources</i> , 2020 , 451, 2277	849 349	11
328	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691	20.1	54
327	Li-air Battery with a Superhydrophobic Li-Protective Layer. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 23010-23016	9.5	14
326	A New Strategy of Constructing a Highly Fluorinated Solid-Electrolyte Interface towards High-Performance Lithium Anode. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000154	4.6	12
325	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angewandte Chemie - International Edition, 2020 , 59, 18322-18333	16.4	40
324	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 18478-18489	3.6	14
323	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3459-	3 ¹ 467	38
322	Hybrid electrolyte for advanced rechargeable batteries. <i>Science Bulletin</i> , 2020 , 65, 92-93	10.6	О
321	Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 411-417	20.1	67
320	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium batteries. <i>Energy Storage Materials</i> , 2020 , 26, 593-603	19.4	20
319	Space-Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 3161-3166	3.6	11
318	Space-Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3137-	3942	34
317	Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. <i>BMC Genomics</i> , 2020 , 21, 715	4.5	3
316	Organic Flow Batteries: Recent Progress and Perspectives. <i>Energy & amp; Fuels</i> , 2020 , 34, 13384-13411	4.1	24

315	Annealing-Free Platinum Dobalt Alloy Nanoparticles on Nitrogen-Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. <i>ChemElectroChem</i> , 2020 , 7, 3341-3346	4.3	2
314	Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. <i>ChemSusChem</i> , 2020 , 13, 5556-5564	8.3	25
313	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. <i>Cell Reports Physical Science</i> , 2020 , 1, 100138	6.1	16
312	Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. <i>Advanced Functional Materials</i> , 2020 , 30, 2006297	15.6	18
311	Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L <i>Journal of Plant Growth Regulation</i> , 2020 , 39, 324	4 ⁴ 3⁄37	9
310	Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. <i>BMC Plant Biology</i> , 2020 , 20, 165	5.3	9
309	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. <i>Advanced Energy Materials</i> , 2020 , 10, 1903977	21.8	144
308	Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. <i>Advanced Energy Materials</i> , 2020 , 10, 2000907	21.8	46
307	Lithium ion storage in lithium titanium germanate. <i>Nano Energy</i> , 2019 , 66, 104094	17.1	7
306	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22930-22938	13	12
305	Dynamic visualization of the phase transformation path in LiFePO during delithiation. <i>Nanoscale</i> , 2019 , 11, 17557-17562	7.7	7
304	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. <i>Science Bulletin</i> , 2019 , 64, 1780-1787	10.6	31
303	Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. <i>Angewandte Chemie</i> , 2019 , 131, 4670-4674	3.6	3
302	Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4622-4626	16.4	28
301	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4399-4405	8.3	5
300	Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. <i>Advanced Energy Materials</i> , 2019 , 9, 1900853	21.8	67
299	Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer. <i>ACS Energy Letters</i> , 2019 , 4, 1725-1731	20.1	52
298	All-polymer particulate slurry batteries. <i>Nature Communications</i> , 2019 , 10, 2513	17.4	57

(2019-2019)

297	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. <i>Chemistry of Materials</i> , 2019 , 31, 4524-4535	9.6	23
296	Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. <i>Applied Surface Science</i> , 2019 , 487, 1145-1151	6.7	64
295	EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. <i>BMC Plant Biology</i> , 2019 , 19, 235	5.3	19
294	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. <i>Batteries and Supercaps</i> , 2019 , 2, 867-873	5.6	4
293	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. <i>Nano Research</i> , 2019 , 12, 1713-1719	10	42
292	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 20796-20803	9.5	51
291	A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery. <i>Electrochimica Acta</i> , 2019 , 310, 1-12	6.7	31
290	A novel aqueous Li+ (or Na+)/Br[hybrid-ion battery with super high areal capacity and energy density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13050-13059	13	8
289	Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. <i>Journal of Alloys and Compounds</i> , 2019 , 790, 203-211	5.7	35
288	A dendrite-free Li plating host towards high utilization of Li metal anode in LiD2 battery. <i>Science Bulletin</i> , 2019 , 64, 478-484	10.6	10
287	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. <i>Joule</i> , 2019 , 3, 1289-1300	27.8	351
286	Creating an Air-Stable Sulfur-Doped Black Phosphorus-TiO2 Composite as High-Performance Anode Material for Sodium-Ion Storage. <i>Advanced Functional Materials</i> , 2019 , 29, 1900535	15.6	36
285	A few-layered MoS nanosheets/nitrogen-doped graphene 3D aerogel as a high performance and long-term stability supercapacitor electrode. <i>Nanoscale</i> , 2019 , 11, 4318-4327	7.7	34
284	Genome-Wide Identification and Expression Profiling of the Gene Family in L. Under Various Abiotic Stresses. <i>DNA and Cell Biology</i> , 2019 , 38, 1056-1068	3.6	14
283	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2741-2750	35.4	49
282	An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18940-18949	13	21
281	CNT-Decorated NaMnCo(PO)PO Microspheres as a Novel High-Voltage Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 27813-27822	9.5	19
280	Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. <i>Journal of Power Sources</i> , 2019 , 437, 226917	8.9	35

279	Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. <i>Electrochimica Acta</i> , 2019 , 320, 134555	6.7	10
278	Catalytic Cathodes: A Highly Reversible Long-Life Li © O2 Battery with a RuP2-Based Catalytic Cathode (Small 29/2019). <i>Small</i> , 2019 , 15, 1970155	11	1
277	An All-Solid-State SodiumBulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5263-5271	6.1	29
276	Hierarchical microfianostructured and Al3+floped Li1.2Ni0.2Mn0.6O2 active materials with enhanced electrochemical properties as cathode materials for Lifbn batteries. <i>Scripta Materialia</i> , 2019 , 171, 47-51	5.6	2
275	Positive Surface Pseudocapacitive Behavior-Induced Fast and Large Li-ion Storage in Mesoporous LiMnPO @C Nanofibers. <i>ChemSusChem</i> , 2019 , 12, 3817-3826	8.3	12
274	Dual oxidation by hybrid electrode: Efficiency enhancement of direct hypophosphite fuel cell. Journal of Power Sources, 2019 , 438, 226983	8.9	2
273	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. <i>Research</i> , 2019 , 2019, 7481319	7.8	5
272	Hydrothermal two-dimensionalisation to porous ZnCo2O4 nanosheets non-platinum ORR catalyst. <i>Micro and Nano Letters</i> , 2019 , 14, 665-668	0.9	1
271	Dual Lithiophilic Structure for Uniform Li Deposition. <i>ACS Applied Materials & Deposition and Materials & Deposition and Materials & Deposition and Materials & Deposition and Deposition</i>	9.5	29
270	Transcriptome-Wide Characterization and Functional Identification of the Aquaporin Gene Family During Drought Stress in Common Vetch. <i>DNA and Cell Biology</i> , 2019 , 38, 374-384	3.6	7
269	High-Energy Rechargeable Metallic Lithium Battery at 🛭 0 🖔 Enabled by a Cosolvent Electrolyte. <i>Angewandte Chemie</i> , 2019 , 131, 5679-5683	3.6	38
268	High-Energy Rechargeable Metallic Lithium Battery at -70 LC Enabled by a Cosolvent Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5623-5627	16.4	97
267	Effects of organic solvents on morphologies, photoluminescence, and photocatalytic properties of ZnO nanostructures. <i>Micro and Nano Letters</i> , 2019 , 14, 1146-1150	0.9	2
266	Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. <i>BMC Genomics</i> , 2019 , 20, 861	4.5	O
265	Anchoring an Artificial Solid-Electrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2093-2097	16.4	69
264	Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries. <i>Electrochimica Acta</i> , 2019 , 296, 345-354	6.7	11
263	Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. <i>ChemSusChem</i> , 2019 , 12, 1118-1132	8.3	40
262	Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. <i>Journal of Plant Biochemistry and Biotechnology</i> , 2019 , 28, 320-335	1.6	9

(2018-2019)

261	Anchoring an Artificial Solid E lectrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes. <i>Angewandte Chemie</i> , 2019 , 131, 2115-2119	3.6	8
260	Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for LiftO2 batteries. <i>Electrochimica Acta</i> , 2019 , 299, 592-599	6.7	35
259	A Highly Reversible Long-Life Li-CO Battery with a RuP -Based Catalytic Cathode. <i>Small</i> , 2019 , 15, e1803	3246	53
258	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. <i>Small Methods</i> , 2019 , 3, 1800272	12.8	259
257	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for High-Performance Hybrid Supercapacitors. <i>Advanced Materials</i> , 2019 , 31, e1806197	24	64
256	Organic Batteries Operated at 🛭 OCC. Joule, 2018 , 2, 902-913	27.8	172
255	A flexible polymer-based Lillir battery using a reduced graphene oxide/Li composite anode. Journal of Materials Chemistry A, 2018 , 6, 6022-6032	13	42
254	Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode. <i>Journal of Power Sources</i> , 2018 , 384, 10-17	8.9	25
253	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2018 , 12, 4868-4876	16.7	177
252	Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor. <i>ChemSusChem</i> , 2018 , 11, 1741-1745	8.3	23
251	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. <i>Energy Storage Materials</i> , 2018 , 14, 246-252	19.4	88
250	Ultrasmall TiO-Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Discrete Anode Materials & </i>	5 ^{9.5}	45
249	A clean and membrane-free chlor-alkali process with decoupled Cl and H/NaOH production. <i>Nature Communications</i> , 2018 , 9, 438	17.4	42
248	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2904	- 2 9 0 8	45
247	Interface Engineering of Anchored Ultrathin TiO/MoS Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. <i>ACS Applied Materials & Company Interfaces</i> , 2018 , 10, 6084-6089	9.5	43
246	A high voltage cathode of Na2+2xFe2\(\text{I}(SO4)\)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4354-4364	13	30
245	Li2TiSiO5 and expanded graphite nanocomposite anode material with Improved rate performance for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 260, 695-702	6.7	26
244	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702288	21.8	191

243	Nature-Derived Approach to Oxygen and Chlorine Dual-Vacancies for Efficient Photocatalysis and Photoelectrochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2395-2406	8.3	50
242	Walnut-Like MulticoreBhell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1800003	15.6	148
241	Progress in Aqueous Rechargeable Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1703008	21.8	188
240	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. <i>Angewandte Chemie</i> , 2018 , 130, 2954-2958	3.6	12
239	A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. <i>Solid State Ionics</i> , 2018 , 318, 82-87	3.3	32
238	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. <i>Nature Communications</i> , 2018 , 9, 2906	17.4	618
237	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. <i>Angewandte Chemie</i> , 2018 , 130, 11911-11915	3.6	106
236	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 11737-11741	16.4	261
235	Self-doping of Ti3+into Na2Ti3O7 increases both ion and electron conductivity as a high-performance anode material for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 767, 820-828	5.7	25
234	Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. <i>Journal of Power Sources</i> , 2018 , 398, 167-174	8.9	79
233	Hypophosphites as Eco-Compatible Fuels for Membrane-Free Direct Liquid Fuel Cells. <i>Chemistry - A European Journal</i> , 2018 , 24, 10310-10314	4.8	3
232	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. <i>Nano Research</i> , 2018 , 11, 6436-6446	10	29
231	S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. <i>Electrochimica Acta</i> , 2018 , 281, 789-795	6.7	15
230	The development in aqueous lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1521-1535	12	65
229	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2047-2052	13	56
228	In situ encapsulation of coreEhell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable ZnEir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1443-	1433	129
227	Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production. <i>Energy Storage Materials</i> , 2018 , 11, 260-266	19.4	12
226	Efficient solar-driven electrocatalytic CO reduction in a redox-medium-assisted system. <i>Nature Communications</i> , 2018 , 9, 5003	17.4	64

225	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO Nanoflakes for High-Performance Rechargeable Magnesium Batteries. <i>ACS Nano</i> , 2018 , 12, 12492-12502	16.7	85
224	Na1.68H0.32Ti2O3SiO4[1.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. <i>ACS Applied Energy Materials</i> , 2018 ,	6.1	3
223	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. <i>Nano Energy</i> , 2018 , 54, 17-25	17.1	96
222	Black Phosphorus Stabilizing NaTiO/C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2018 , 10, 37163-37171	9.5	30
221	Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16131-16135	16.4	64
220	Flexible LithiumAir Battery in Ambient Air with an In Situ Formed Gel Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 16363-16367	3.6	5
219	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 3075-3095	35.4	212
218	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. <i>ACS Energy Letters</i> , 2018 , 3, 2404-2409	20.1	56
217	Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 8346-8350	3.6	10
216	Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8214-8218	16.4	39
215	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 26178-26187	9.5	66
214	Highly Branched VS Nanodendrites with 1D Atomic-Chain Structure as a Promising Cathode Material for Long-Cycling Magnesium Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802563	24	119
213	High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode. <i>Electrochimica Acta</i> , 2017 , 228, 251-258	6.7	26
212	Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn2O4 Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1503-1508	8.3	34
211	All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte. <i>Chemistry - A European Journal</i> , 2017 , 23, 2560-2565	4.8	95
210	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. <i>Nanoscale</i> , 2017 , 9, 1972-1977	7.7	36
209	TiPO and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. <i>ACS Applied Materials & District Materia</i>	9.5	39
208	Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode. <i>ACS Energy Letters</i> , 2017 , 2, 1115-1121	20.1	207

207	Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1456-1464	35.4	73
206	Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10902-10908	13	39
205	Electrochemical Performance of Li4Ti5O12 Nanowire/Fe3O4 Nanoparticle Compound as Anode Material of Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2017 , 241, 179-188	6.7	14
204	A PEO-based gel polymer electrolyte for lithium ion batteries. <i>RSC Advances</i> , 2017 , 7, 23494-23501	3.7	115
203	A Multifunction LithiumCarbon Battery System Using a Dual Electrolyte. <i>ACS Energy Letters</i> , 2017 , 2, 36-44	20.1	23
202	A Long-Life Lithium Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. <i>Angewandte Chemie</i> , 2017 , 129, 7613-7617	3.6	42
201	A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7505-7509	16.4	100
200	A Rechargeable Li-CO Battery with a Gel Polymer Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9126-9130	16.4	115
199	A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte. <i>Angewandte Chemie</i> , 2017 , 129, 9254-92	2 5 586	15
198	Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. <i>Nano Research</i> , 2017 , 10, 2495-2507	10	27
197	A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8440-8450	13	48
196	Manganese vanadium oxide hollow microspheres: a novel electrocatalyst for oxygen reduction reaction. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1743-1749	2.6	5
195	Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 437-444	11.5	194
194	All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. <i>Solid State Ionics</i> , 2017 , 300, 114-119	3.3	35
193	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. <i>Nanoscale</i> , 2017 , 9, 1237-1243	7.7	121
192	Carbon Quantum Dot-Induced MnO Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. <i>ACS Applied Materials & Discrete ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	61
191	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 13060-13066	3.6	14
190	Nanosphere of Pb-modified bismuth-based borate photocatalysts. <i>Micro and Nano Letters</i> , 2017 , 12, 430-434	0.9	2

189	One-Step Synthesis of Trirutile Oxides ZnBi2O6-Graphene Oxide with Enhanced Photocatalytic Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 2006-2011	1.3	1
188	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017 , 364, 465-472	8.9	20
187	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of NaTiO Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. <i>ACS Omega</i> , 2017 , 2, 5726-5736	3.9	11
186	CsPbSnIBr Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14009-14012	16.4	353
185	A sulfurHePO4L nanocomposite cathode for stable and anti-self-discharge lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17926-17932	13	13
184	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. <i>CheM</i> , 2017 , 3, 348-362	16.2	135
183	Self-generated hollow NaTi2(PO4)3 nanocubes decorated with graphene as a large capacity and long lifetime anode for sodium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 56743-56751	3.7	17
182	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 7839-7846	11.5	172
181	A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16606-	16610	50
180	A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. <i>Angewandte Chemie</i> , 2017 , 129, 16833-16837	3.6	8
179	Improved electrochemical performance of a Li3V2(PO4)3 cathode in a wide potential window for lithium-ion storage by surface N-doped carbon coating and bulk K-doping. <i>New Journal of Chemistry</i> , 2017 , 41, 8772-8780	3.6	13
178	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCoO nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries. <i>Nanoscale</i> , 2017 , 9, 11	1 4 8-11	139
177	High-Performance Li-Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 25232-25238	9.5	33
176	Roles of carbon nanotubes in novel energy storage devices. <i>Carbon</i> , 2017 , 122, 462-474	10.4	99
175	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2017 , 11, 7274-7283	16.7	167
174	MoS2-Based All-Purpose Fibrous Electrode and Self-Powering Energy Fiber for Efficient Energy Harvesting and Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1601208	21.8	110
173	A one-step way to novel carbon-niobium nitride nanoparticles for efficient oxygen reduction. Journal of the American Ceramic Society, 2017 , 100, 638-646	3.8	2
172	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Pt-Decorated Ni3N Nanosheets. <i>Advanced Energy Materials</i> , 2017 , 7, 1601390	21.8	176

171	One-step hydrothermal route to synthesise BiIO4/Bi2O2 (BO2 OH) heterostructure with improved photocatalytic performance. <i>Micro and Nano Letters</i> , 2017 , 12, 944-948	0.9	1
170	Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping. <i>Journal of Colloid and Interface Science</i> , 2016 , 461, 185-194	9.3	15
169	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. <i>Chemical Society Reviews</i> , 2016 , 45, 5925-5950	58.5	2202
168	All-Inorganic Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15829-15832	16.4	700
167	Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. <i>RSC Advances</i> , 2016 , 6, 71581-71588	3.7	55
166	In Situ Thermal Synthesis of Inlaid Ultrathin MoS2/Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. <i>Chemistry of Materials</i> , 2016 , 28, 5733-5742	9.6	145
165	Egg-Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. <i>Advanced Energy Materials</i> , 2016 , 6, 1600794	21.8	133
164	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. <i>Nature Communications</i> , 2016 , 7, 11741	17.4	232
163	Pressure-Driven Cooperative Spin-Crossover, Large-Volume Collapse, and Semiconductor-to-Metal Transition in Manganese(II) Honeycomb Lattices. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15751-15757	16.4	50
162	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. <i>RSC Advances</i> , 2016 , 6, 107355-107363	3.7	8
161	Three-Dimensional Ordered Macroporous FePO as High-Efficiency Catalyst for Rechargeable Li-O Batteries. <i>ACS Applied Materials & Discourse Materials</i> (1997) 100 Batteries. <i>ACS Applied Materials & Discourse Materials</i> (1997) 100 Batteries. <i>ACS Applied Materials & Discourse Materials</i> (1997) 100 Batteries. <i>ACS Applied Materials & Discourse Materials</i> (1997) 100 Batteries. <i>ACS Applied Materials</i> (1997) 100 Batteries.	9.5	20
160	Low-cost and high-performance of a vertically grown 3D NiHe layered double hydroxide/graphene aerogel supercapacitor electrode material. <i>RSC Advances</i> , 2016 , 6, 107278-107285	3.7	42
159	High-Performance LithiumAir Battery with a Coaxial-Fiber Architecture. <i>Angewandte Chemie</i> , 2016 , 128, 4563-4567	3.6	22
158	Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density. <i>Angewandte Chemie</i> , 2016 , 128, 7600-7603	3.6	20
157	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study. <i>Inorganic Chemistry</i> , 2016 , 55, 5993-8	5.1	48
156	Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. <i>ACS Applied Materials & Discrete Sodium Section</i> 10, 15341-51	9.5	102
155	The roles of endoplasmic reticulum stress response in female mammalian reproduction. <i>Cell and Tissue Research</i> , 2016 , 363, 589-97	4.2	45
154	Mesoporous Cd1-xZnxS microspheres with tunable bandgap and high specific surface areas for enhanced visible-light-driven hydrogen generation. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 97-104	9.3	37

(2016-2016)

153	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. <i>Science Advances</i> , 2016 , 2, e1501038	14.3	245	
152	Base-acid hybrid water electrolysis. <i>Chemical Communications</i> , 2016 , 52, 3147-50	5.8	19	
151	New Insights into the Role of Autophagy in Ovarian Cryopreservation by Vitrification. <i>Biology of Reproduction</i> , 2016 , 94, 137	3.9	4	
150	Electrochemical Profile of LiTi2(PO4)3and NaTi2(PO4)3in Lithium, Sodium or Mixed Ion Aqueous Solutions. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A904-A910	3.9	33	
149	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. <i>Electrochimica Acta</i> , 2016 , 196, 300-308	6.7	28	
148	To mitigate self-discharge of lithiumBulfur batteries by optimizing ionic liquid electrolytes. <i>Energy</i> and Environmental Science, 2016 , 9, 224-231	35.4	159	
147	A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. <i>Journal of Power Sources</i> , 2016 , 303, 333-339	8.9	65	
146	In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. <i>Carbon</i> , 2016 , 96, 955-964	10.4	123	
145	Graphene-Supported Nitrogen and Boron Rich Carbon Layer for Improved Performance of LithiumBulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. <i>Advanced Energy Materials</i> , 2016 , 6, 1501733	21.8	140	
144	Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 7474-7	16.4	122	
143	High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4487-91	16.4	153	
142	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500496	4.6	4	
141	Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. <i>Nature Communications</i> , 2016 , 7, 12214	17.4	30	
140	Elastic, magnetic and electronic properties of iridium phosphide Ir2P. <i>Scientific Reports</i> , 2016 , 6, 21787	4.9	14	
139	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6282	-6289	52	
138	Emerging non-lithium ion batteries. <i>Energy Storage Materials</i> , 2016 , 4, 103-129	19.4	180	
137	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9685-9691	3.8	109	
136	A Self-Healing Aqueous Lithium-Ion Battery. <i>Angewandte Chemie</i> , 2016 , 128, 14596-14600	3.6	25	

135	Carbon Dots/NiCo O Nanocomposites with Various Morphologies for High Performance Supercapacitors. <i>Small</i> , 2016 , 12, 5927-5934	11	150
134	A Self-Healing Aqueous Lithium-Ion Battery. Angewandte Chemie - International Edition, 2016 , 55, 14384	1-161.48	8151
133	Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17111-17	120	56
132	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26834-26841	9.5	40
131	Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. <i>ACS Applied Materials & Design Company </i>	9.5	93
130	A scalable hybrid separator for a high performance lithium-sulfur battery. <i>Chemical Communications</i> , 2015 , 51, 6996-9	5.8	43
129	A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. <i>Energy and Environmental Science</i> , 2015 , 8, 1551-1558	35.4	197
128	Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15190-15201	13	87
127	Aqueous Lithium-Ion Batteries Using O2Self-Elimination Polyimides Electrodes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1972-A1977	3.9	28
126	Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. <i>Reproductive Sciences</i> , 2015 , 22, 572-84	3	27
125	Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process. <i>Journal of Power Sources</i> , 2015 , 287, 370-376	8.9	14
124	Impact of hydrostatic pressure on the crystal structure and photoluminescence properties of Mn4+-doped BaTiF6 red phosphor. <i>Dalton Transactions</i> , 2015 , 44, 7578-85	4.3	35
123	An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates. <i>Electrochemistry Communications</i> , 2015 , 55, 6-9	5.1	29
122	Hydrothermal synthesis and electrochemical performance of nanoparticle Li2FeSiO4/C cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2015 , 167, 340-347	6.7	12
121	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1114	.4 <u>1</u> 6.4	226
120	A coreBhell-structured TiO2(B) nanofiber@porous RuO2 composite as a carbon-free catalytic cathode for Li D 2 batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21123-21132	13	27
119	Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. <i>Journal of Power Sources</i> , 2015 , 276, 181-188	8.9	63
118	Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1400982	21.8	244

117	A lithium air battery with a lithiated Al-carbon anode. Chemical Communications, 2015, 51, 676-8	5.8	65
116	Leaf-Like Graphene-Oxide-Wrapped Sulfur for High-Performance Lithium-Sulfur Battery. <i>Advanced Science</i> , 2015 , 2, 1500071	13.6	93
115	Flexible, Stretchable, and Rechargeable Fiber-Shaped ZincAir Battery Based on Cross-Stacked Carbon Nanotube Sheets. <i>Angewandte Chemie</i> , 2015 , 127, 15610-15614	3.6	55
114	Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15390-4	16.4	241
113	Realizing both High Energy and High Power Densities by Twisting Three Carbon-Nanotube-Based Hybrid Fibers. <i>Angewandte Chemie</i> , 2015 , 127, 11329-11334	3.6	14
112	Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11177-82	16.4	83
111	Prognostic role of HOTAIR in four estrogen-dependent malignant tumors: a meta-analysis. <i>OncoTargets and Therapy</i> , 2015 , 8, 1471-82	4.4	18
110	A hybrid aerogel of CoAl layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 26017-26026	3.7	22
109	Cycling Stability of Spinel LiMn2O4 with Different Particle Sizes in Aqueous Electrolyte. <i>Electrochimica Acta</i> , 2015 , 173, 178-183	6.7	39
108	Sandwich-like Cr2O3graphite intercalation composites as high-stability anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1703-1708	13	35
107	Carbon Coated Li4Ti5O12 Nanowire with High Electrochemical Performance under Elevated Temperature. <i>Electrochimica Acta</i> , 2015 , 156, 38-44	6.7	39
106	Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6064-6072	13	45
105	Re-building Daniell cell with a Li-ion exchange film. Scientific Reports, 2014, 4, 6916	4.9	18
104	Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. <i>Electrochimica Acta</i> , 2014 , 115, 358-363	6.7	93
103	Metal-organic frameworks as cathode materials for Li-O2 batteries. <i>Advanced Materials</i> , 2014 , 26, 3258	-624	240
102	Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors. <i>ChemPhysChem</i> , 2014 , 15, 2084-93	3.2	49
101	Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4954	13	122
100	Polyimide as anode electrode material for rechargeable sodium batteries. <i>RSC Advances</i> , 2014 , 4, 25369	9- 3.5 37	3 81

99	B-doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Li-ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 5511-5521	15.6	139
98	A Nitrogen-doped Hierarchical Mesoporous/Microporous Carbon for Supercapacitors. <i>Electrochimica Acta</i> , 2014 , 146, 485-494	6.7	28
97	Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. <i>Electrochimica Acta</i> , 2014 , 142, 118-124	6.7	72
96	Graphene oxide assisted solvothermal synthesis of LiMnPO 4 naonplates cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 146, 8-14	6.7	36
95	Three-dimensional CoDD NiMoOL ore/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Applied Materials & Interfaces, 2014, 6, 5050-5	9.5	175
94	Humidity effect on electrochemical performance of LiD2 batteries. <i>Journal of Power Sources</i> , 2014 , 264, 1-7	8.9	101
93	Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7864-9	16.4	259
92	Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. <i>Advanced Materials</i> , 2014 , 26, 1217-22	24	256
91	Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes. <i>Advanced Functional Materials</i> , 2014 , 24, 3405-3412	15.6	277
90	Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2014 , 23, 315-323	12	22
89	Note: Loading method of molecular fluorine using x-ray induced chemistry. <i>Review of Scientific Instruments</i> , 2014 , 85, 086110	1.7	10
88	Räktitelbild: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance (Angew. Chem. 30/2014). <i>Angewandte Chemie</i> , 2014 , 126, 8092-8092	3.6	О
87	Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance. <i>Angewandte Chemie</i> , 2014 , 126, 7998-8003	3.6	119
86	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1300600	21.8	63
85	Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O(2) batteries. <i>Advanced Materials</i> , 2013 , 25, 5668-72	24	270
84	Leaf-like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	2
83	Novel electric double-layer capacitor with a coaxial fiber structure. Advanced Materials, 2013, 25, 6436-	- 4 1 ₄	314
82	Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 86-92	4.1	17

(2012-2013)

81	Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2013 , 36, 107-110	5.1	38
80	High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte. <i>Chemical Communications</i> , 2013 , 49, 2204-6	5.8	56
79	Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. <i>New Journal of Chemistry</i> , 2013 , 37, 1768	3.6	29
78	High Performance Hybrid Supercapacitor Based on Graphene-Supported Ni(OH)2-Nanowires and Ordered Mesoporous Carbon CMK-5. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A98-A104	3.9	65
77	TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 335	2 3.7	36
76	Pseudo-capacitive profile vs. Li-intercalation in Nano-LiFePO4. <i>Journal of Power Sources</i> , 2013 , 236, 230	-2337	18
75	Electrochemical performance comparison of LiFePO4 supported by various carbon materials. <i>Electrochimica Acta</i> , 2013 , 88, 632-638	6.7	72
74	Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1192-1200	13	58
73	Batteries: Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery (Adv. Mater. 8/2013). <i>Advanced Materials</i> , 2013 , 25, 1224-1224	24	10
72	Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. <i>Advanced Materials</i> , 2013 , 25, 1155-9, 1224	24	635
71	Graphite-anchored lithium vanadium oxide as anode of lithium ion battery. <i>Electrochimica Acta</i> , 2013 , 106, 534-540	6.7	14
70	A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8488	13	116
69	Recent progress in supercapacitors: from materials design to system construction. <i>Advanced Materials</i> , 2013 , 25, 5336-42	24	485
68	A Thin-Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell. <i>Advanced Energy Materials</i> , 2013 , 3, 713-717	21.8	16
67	Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2013 , 23, 640-647	15.6	71
66	Capacitors: Novel Electric Double-Layer Capacitor with a Coaxial Fiber Structure (Adv. Mater. 44/2013). <i>Advanced Materials</i> , 2013 , 25, 6468-6468	24	
65	A reduced graphene oxide/Cu6Sn5 nanocomposite with enhanced cycling stability for lithium storage. <i>Nanotechnology</i> , 2013 , 24, 424010	3.4	4
64	Pitch modified hard carbons as negative materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 74, 1-7	6.7	48

63	High performance LiD2 battery using EMnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. <i>Electrochemistry Communications</i> , 2012 , 25, 26-29	5.1	30
62	Layered H2Ti6O13-Nanowires: A New Promising Pseudocapacitive Material in Non-Aqueous Electrolyte. <i>Advanced Functional Materials</i> , 2012 , 22, 5185-5193	15.6	201
61	Ti-based compounds as anode materials for Li-ion batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 6652	35.4	691
60	Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19	37-194	3 ⁴⁴
59	Recent Progress in Aqueous Lithium-Ion Batteries. Advanced Energy Materials, 2012, 2, 830-840	21.8	390
58	Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 4016	35.4	342
57	Olivine LiFePO4: development and future. Energy and Environmental Science, 2011, 4, 805-817	35.4	273
56	To draw an air electrode of a Li∃ir battery by pencil. <i>Energy and Environmental Science</i> , 2011 , 4, 1704	35.4	132
55	A Li-liquid cathode battery based on a hybrid electrolyte. <i>ChemSusChem</i> , 2011 , 4, 1087-90	8.3	70
54	A lithiumBir capacitorBattery based on a hybrid electrolyte. <i>Energy and Environmental Science</i> , 2011 , 4, 4994	35.4	82
53	Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1780-1787		90
52	Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. <i>Chemical Communications</i> , 2011 , 47, 10701-3	5.8	66
51	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10999		143
50	A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. <i>Electrochimica Acta</i> , 2011 , 56, 1392-1398	6.7	44
49	The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. <i>Journal of Power Sources</i> , 2011 , 196, 5611-5616	8.9	59
48	Nano active materials for lithium-ion batteries. <i>Nanoscale</i> , 2010 , 2, 1294-305	7.7	443
47	A novel direct borohydride fuel cell using an acidElkaline hybrid electrolyte. <i>Energy and Environmental Science</i> , 2010 , 3, 1515	35.4	23
46	Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. <i>ACS Applied Materials & Distributed Section</i> , 2, 212-8	9.5	111

(2008-2010)

45	A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. <i>Chemical Communications</i> , 2010 , 46, 6305-7	5.8	59
44	A novel rechargeable Li-AgO battery with hybrid electrolytes. <i>Chemical Communications</i> , 2010 , 46, 2055	5- 3 .8	21
43	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9748		56
42	Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties. <i>ChemPhysChem</i> , 2010 , 11, 3273-80	3.2	34
41	Controllable hydrogen generation from water. <i>ChemSusChem</i> , 2010 , 3, 571-4	8.3	21
40	The development of a new type of rechargeable batteries based on hybrid electrolytes. <i>ChemSusChem</i> , 2010 , 3, 1009-19	8.3	78
39	A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of Power Sources, 2010 , 195, 358-361	8.9	255
38	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. <i>Electrochemistry Communications</i> , 2010 , 12, 1686-1689	5.1	100
37	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 2009 , 192, 668-673	8.9	101
36	A new type rechargeable lithium battery based on a Cu-cathode. <i>Electrochemistry Communications</i> , 2009 , 11, 1834-1837	5.1	29
35	Mesoporous Carbon Nanofibers for Supercapacitor Application. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1093-1097	3.8	174
34	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2835		111
33	Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15098-9	16.4	95
32	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6789		228
31	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7885		123
30	Lithium-Ion Intercalation Behavior of LiFePO[sub 4] in Aqueous and Nonaqueous Electrolyte Solutions. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A144	3.9	76
29	A competitive candidate material for aqueous supercapacitors: High surface-area graphite. <i>Journal of Power Sources</i> , 2008 , 185, 1557-1562	8.9	87
28	The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7461-5	16.4	756

27	A Polyaniline-Intercalated Layered Manganese Oxide Nanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its High Electrochemical Performance for Li Storage. <i>Advanced Materials</i> , 2008 , 20, 2166-2170	24	106
26	The Design of a LiFePO4/Carbon Nanocomposite With a CoreBhell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. <i>Angewandte Chemie</i> , 2008 , 120, 7571-7575	3.6	80
25	Hemoglobin immobilized on whisker-like carbon composites and its direct electrochemistry. <i>Electrochimica Acta</i> , 2008 , 53, 4748-4753	6.7	19
24	Ordered Mesoporous Spinel LiMn2O4 by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2007 , 19, 4791-4795	9.6	176
23	High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions. <i>Chemistry of Materials</i> , 2007 , 19, 2095-2101	9.6	126
22	Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. <i>Electrochimica Acta</i> , 2007 , 53, 752-757	6.7	145
21	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A228	3.9	54
20	Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. <i>Advanced Materials</i> , 2006 , 18, 2619-2623	24	959
19	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A450	3.9	183
18	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds: II. Comparison of , , and Positive Electrodes. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1425	3.9	144
17	Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni(OH)[sub 2]Carbon Nanotube Composites and Activated Carbon. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A743	3.9	96
16	Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. <i>Electrochimica Acta</i> , 2006 , 51, 3223-3227	6.7	259
15	A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. <i>Electrochemistry Communications</i> , 2006 , 8, 1775-1778	5.1	57
14	Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. <i>Journal of Power Sources</i> , 2006 , 153, 191-196	8.9	101
13	Enhanced Electrochemical Capacitance of NiO Loaded on TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A671	3.9	54
12	A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. <i>Electrochemistry Communications</i> , 2005 , 7, 1138-1142	5.1	276
11	Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. <i>Electrochimica Acta</i> , 2005 , 50, 3576-3580	6.7	167
10	An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. <i>Electrochimica Acta</i> , 2005 , 50, 5641-5646	6.7	245

LIST OF PUBLICATIONS

9	Bonding Polyether onto ZnO Nanoparticles: An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity. <i>Advanced Functional Materials</i> , 2005 , 15, 1751-1756	15.6	121
8	Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. <i>Electrochimica Acta</i> , 2004 , 49, 1957-1962	6.7	156
7	All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte. <i>Solid State Ionics</i> , 2004 , 166, 61-67	3.3	36
6	A new air electrode based on carbon nanotubes and AgMnO2 for metal air electrochemical cells. <i>Carbon</i> , 2004 , 42, 3097-3102	10.4	53
5	Fluorinated Carbon Materials and the Applications in Energy Storage Systems. <i>ACS Applied Energy Materials</i> ,	6.1	О
4	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. <i>Informa</i> li Materily,	23.1	11
3	Prussian Blue Cathode with Intercalation Pseudocapacitive Behavior for Low-Temperature Batteries. <i>Advanced Energy and Sustainability Research</i> ,2100105	1.6	2
2	A Highly Stable Li-Organic All-Solid-State Battery Based on Sulfide Electrolytes. <i>Advanced Energy Materials</i> ,2103932	21.8	3
1	Cleistogamous spike and chasmogamous spike carbon remobilization improve the seed potential yield of Cleistogenes songorica under water stress. <i>Seed Science Research</i> ,1-12	1.3	