Yong-Gang Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3567306/yong-gang-wang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31,821 166 386 96 h-index g-index citations papers 37,467 7.85 405 11.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
386	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. <i>Chemical Society Reviews</i> , 2016 , 45, 5925-5950	58.5	2202
385	Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. <i>Advanced Materials</i> , 2006 , 18, 2619-2623	24	959
384	The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7461-5	16.4	756
383	All-Inorganic Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15829-15832	16.4	700
382	Ti-based compounds as anode materials for Li-ion batteries. <i>Energy and Environmental Science</i> , 2012 , 5, 6652	35.4	691
381	Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. <i>Advanced Materials</i> , 2013 , 25, 1155-9, 1224	24	635
380	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. <i>Nature Communications</i> , 2018 , 9, 2906	17.4	618
379	Recent progress in supercapacitors: from materials design to system construction. <i>Advanced Materials</i> , 2013 , 25, 5336-42	24	485
378	Nano active materials for lithium-ion batteries. <i>Nanoscale</i> , 2010 , 2, 1294-305	7.7	443
377	Recent Progress in Aqueous Lithium-Ion Batteries. Advanced Energy Materials, 2012, 2, 830-840	21.8	390
376	CsPbSnIBr Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012	16.4	353
375	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. <i>Joule</i> , 2019 , 3, 1289-1300	27.8	351
374	Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 4016	35.4	342
373	Novel electric double-layer capacitor with a coaxial fiber structure. <i>Advanced Materials</i> , 2013 , 25, 6436-	41 4	314
37 2	Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes. <i>Advanced Functional Materials</i> , 2014 , 24, 3405-3412	15.6	277
371	A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. <i>Electrochemistry Communications</i> , 2005 , 7, 1138-1142	5.1	276
370	Olivine LiFePO4: development and future. <i>Energy and Environmental Science</i> , 2011 , 4, 805-817	35.4	273

(2017-2013)

369	Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O(2) batteries. <i>Advanced Materials</i> , 2013 , 25, 5668-72	24	270
368	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741	16.4	261
367	Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7864-9	16.4	259
366	Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. <i>Electrochimica Acta</i> , 2006 , 51, 3223-3227	6.7	259
365	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. <i>Small Methods</i> , 2019 , 3, 1800272	12.8	259
364	Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. <i>Advanced Materials</i> , 2014 , 26, 1217-22	24	256
363	A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. Journal of Power Sources, 2010 , 195, 358-361	8.9	255
362	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. <i>Science Advances</i> , 2016 , 2, e1501038	14.3	245
361	An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. <i>Electrochimica Acta</i> , 2005 , 50, 5641-5646	6.7	245
360	Nitrogen-Doping-Induced Defects of a Carbon Coating Layer Facilitate Na-Storage in Electrode Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1400982	21.8	244
359	Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15390-4	16.4	241
358	Metal-organic frameworks as cathode materials for Li-O2 batteries. <i>Advanced Materials</i> , 2014 , 26, 3258	-624	240
357	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1908528	15.6	239
356	Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. <i>Nature Communications</i> , 2016 , 7, 11741	17.4	232
355	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6789		228
354	Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1114	4 <u>1</u> 6.4	226
353	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 3075-3095	35.4	212
352	Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode. <i>ACS Energy Letters</i> , 2017 , 2, 1115-1121	20.1	207

351	Layered H2Ti6O13-Nanowires: A New Promising Pseudocapacitive Material in Non-Aqueous Electrolyte. <i>Advanced Functional Materials</i> , 2012 , 22, 5185-5193	15.6	201
350	A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. <i>Energy and Environmental Science</i> , 2015 , 8, 1551-1558	35.4	197
349	Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 437-444	11.5	194
348	Synergetic Protective Effect of the Ultralight MWCNTs/NCQDs Modified Separator for Highly Stable LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702288	21.8	191
347	Progress in Aqueous Rechargeable Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1703008	21.8	188
346	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A450	3.9	183
345	Emerging non-lithium ion batteries. <i>Energy Storage Materials</i> , 2016 , 4, 103-129	19.4	180
344	Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2018 , 12, 4868-4876	16.7	177
343	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Pt-Decorated Ni3N Nanosheets. <i>Advanced Energy Materials</i> , 2017 , 7, 1601390	21.8	176
342	Ordered Mesoporous Spinel LiMn2O4 by a Soft-Chemical Process as a Cathode Material for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2007 , 19, 4791-4795	9.6	176
341	Three-dimensional CoD®NiMoOlfore/shell nanowire arrays on Ni foam for electrochemical energy storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5050-5	9.5	175
340	Mesoporous Carbon Nanofibers for Supercapacitor Application. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1093-1097	3.8	174
339	Organic Batteries Operated at 🛘 OCC. Joule, 2018 , 2, 902-913	27.8	172
338	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 7839-7846	11.5	172
337	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries. <i>ACS Nano</i> , 2017 , 11, 7274-7283	16.7	167
336	Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. <i>Electrochimica Acta</i> , 2005 , 50, 3576-3580	6.7	167
335	To mitigate self-discharge of lithiumBulfur batteries by optimizing ionic liquid electrolytes. <i>Energy and Environmental Science</i> , 2016 , 9, 224-231	35.4	159
334	Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. <i>Electrochimica Acta</i> , 2004 , 49, 1957-1962	6.7	156

333	High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4487-91	16.4	153
332	A Self-Healing Aqueous Lithium-Ion Battery. Angewandte Chemie - International Edition, 2016 , 55, 14384	-14.48	8151
331	Carbon Dots/NiCo O Nanocomposites with Various Morphologies for High Performance Supercapacitors. <i>Small</i> , 2016 , 12, 5927-5934	11	150
330	Walnut-Like MulticoreBhell MnO Encapsulated Nitrogen-Rich Carbon Nanocapsules as Anode Material for Long-Cycling and Soft-Packed Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1800003	15.6	148
329	In Situ Thermal Synthesis of Inlaid Ultrathin MoS2/Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. <i>Chemistry of Materials</i> , 2016 , 28, 5733-5742	9.6	145
328	Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. <i>Electrochimica Acta</i> , 2007 , 53, 752-757	6.7	145
327	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds: II. Comparison of , , and Positive Electrodes. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1425	3.9	144
326	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. <i>Advanced Energy Materials</i> , 2020 , 10, 1903977	21.8	144
325	High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10999		143
324	Graphene-Supported Nitrogen and Boron Rich Carbon Layer for Improved Performance of LithiumBulfur Batteries Due to Enhanced Chemisorption of Lithium Polysulfides. <i>Advanced Energy Materials</i> , 2016 , 6, 1501733	21.8	140
323	B-doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Li-ion Batteries. <i>Advanced Functional Materials</i> , 2014 , 24, 5511-5521	15.6	139
322	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. <i>CheM</i> , 2017 , 3, 348-362	16.2	135
321	Egg-Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. <i>Advanced Energy Materials</i> , 2016 , 6, 1600794	21.8	133
320	To draw an air electrode of a LiBir battery by pencil. <i>Energy and Environmental Science</i> , 2011 , 4, 1704	35.4	132
319	In situ encapsulation of coreBhell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1443-	1433	129
318	High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions. <i>Chemistry of Materials</i> , 2007 , 19, 2095-2101	9.6	126
317	Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery. <i>CheM</i> , 2020 , 6, 968-984	16.2	124
316	In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. <i>Carbon</i> , 2016 , 96, 955-964	10.4	123

315	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7885		123
314	Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4954	13	122
313	Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7474-7	16.4	122
312	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. <i>Nanoscale</i> , 2017 , 9, 1237-1243	7.7	121
311	Bonding Polyether onto ZnO Nanoparticles: An Effective Method for Preparing Polymer Nanocomposites with Tunable Luminescence and Stable Conductivity. <i>Advanced Functional Materials</i> , 2005 , 15, 1751-1756	15.6	121
310	Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance. <i>Angewandte Chemie</i> , 2014 , 126, 7998-8003	3.6	119
309	Highly Branched VS Nanodendrites with 1D Atomic-Chain Structure as a Promising Cathode Material for Long-Cycling Magnesium Batteries. <i>Advanced Materials</i> , 2018 , 30, e1802563	24	119
308	A nitrogen-doped ordered mesoporous carbon nanofiber array for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8488	13	116
307	A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017, 7, 23494-23501	3.7	115
306	A Rechargeable Li-CO Battery with a Gel Polymer Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9126-9130	16.4	115
305	Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. <i>ACS Applied Materials & District Mate</i>	9.5	111
304	Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2835		111
303	MoS2-Based All-Purpose Fibrous Electrode and Self-Powering Energy Fiber for Efficient Energy Harvesting and Storage. <i>Advanced Energy Materials</i> , 2017 , 7, 1601208	21.8	110
302	Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9685-9691	3.8	109
301	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. <i>Angewandte Chemie</i> , 2018 , 130, 11911-11915	3.6	106
300	A Polyaniline-Intercalated Layered Manganese Oxide Nanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its High Electrochemical Performance for Li Storage. <i>Advanced Materials</i> , 2008 , 20, 2166-2170	24	106
299	Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. <i>ACS Applied Materials & District Materials</i> (1998) 15341-51	9.5	102
298	Humidity effect on electrochemical performance of LiD2 batteries. <i>Journal of Power Sources</i> , 2014 , 264, 1-7	8.9	101

(2008-2009)

297	Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. <i>Journal of Power Sources</i> , 2009 , 192, 668-673	8.9	101	
296	Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. <i>Journal of Power Sources</i> , 2006 , 153, 191-196	8.9	101	
295	A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7505-7509	16.4	100	
294	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. <i>Electrochemistry Communications</i> , 2010 , 12, 1686-1689	5.1	100	
293	Roles of carbon nanotubes in novel energy storage devices. <i>Carbon</i> , 2017 , 122, 462-474	10.4	99	
292	High-Energy Rechargeable Metallic Lithium Battery at -70 LC Enabled by a Cosolvent Electrolyte. Angewandte Chemie - International Edition, 2019 , 58, 5623-5627	16.4	97	
291	Electrochemical Capacitance Performance of Hybrid Supercapacitors Based on Ni(OH)[sub 2]Carbon Nanotube Composites and Activated Carbon. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A743	3.9	96	
290	Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. <i>Nano Energy</i> , 2018 , 54, 17-25	17.1	96	
289	All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte. <i>Chemistry - A European Journal</i> , 2017 , 23, 2560-2565	4.8	95	
288	Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. <i>Journal of the American Chemical Society</i> , 2009 , 131, 15098-9	16.4	95	
287	Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. <i>ACS Applied Materials & District Materia</i>	9.5	93	
286	Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. <i>Electrochimica Acta</i> , 2014 , 115, 358-363	6.7	93	
285	Leaf-Like Graphene-Oxide-Wrapped Sulfur for High-Performance Lithium-Sulfur Battery. <i>Advanced Science</i> , 2015 , 2, 1500071	13.6	93	
284	Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1780-1787		90	
283	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Long-Life Aqueous Zinc-Organic Batteries. <i>Advanced Materials</i> , 2020 , 32, e2000338	24	89	
282	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. <i>Energy Storage Materials</i> , 2018 , 14, 246-252	19.4	88	
281	Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15190-15201	13	87	
280	A competitive candidate material for aqueous supercapacitors: High surface-area graphite. <i>Journal of Power Sources</i> , 2008 , 185, 1557-1562	8.9	87	

279	Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO Nanoflakes for High-Performance Rechargeable Magnesium Batteries. <i>ACS Nano</i> , 2018 , 12, 12492-12502	16.7	85
278	Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11177-82	16.4	83
277	A lithiumBir capacitorBattery based on a hybrid electrolyte. <i>Energy and Environmental Science</i> , 2011 , 4, 4994	35.4	82
276	Polyimide as anode electrode material for rechargeable sodium batteries. <i>RSC Advances</i> , 2014 , 4, 2536	9 <i>-3</i> . 5 37	3 81
275	The Design of a LiFePO4/Carbon Nanocomposite With a CoreBhell Structure and Its Synthesis by an In Situ Polymerization Restriction Method. <i>Angewandte Chemie</i> , 2008 , 120, 7571-7575	3.6	8o
274	Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. <i>Journal of Power Sources</i> , 2018 , 398, 167-174	8.9	79
273	The development of a new type of rechargeable batteries based on hybrid electrolytes. <i>ChemSusChem</i> , 2010 , 3, 1009-19	8.3	78
272	Lithium-Ion Intercalation Behavior of LiFePO[sub 4] in Aqueous and Nonaqueous Electrolyte Solutions. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A144	3.9	76
271	Li2TiSiO5: a low potential and large capacity Ti-based anode material for Li-ion batteries. <i>Energy and Environmental Science</i> , 2017 , 10, 1456-1464	35.4	73
270	Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. <i>Electrochimica Acta</i> , 2014 , 142, 118-124	6.7	72
269	Electrochemical performance comparison of LiFePO4 supported by various carbon materials. <i>Electrochimica Acta</i> , 2013 , 88, 632-638	6.7	72
268	Binary Li4Ti5O12-Li2Ti3O7 Nanocomposite as an Anode Material for Li-Ion Batteries. <i>Advanced Functional Materials</i> , 2013 , 23, 640-647	15.6	71
267	A Li-liquid cathode battery based on a hybrid electrolyte. <i>ChemSusChem</i> , 2011 , 4, 1087-90	8.3	70
266	Anchoring an Artificial Solid-Electrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2093-2097	16.4	69
265	Scalable production of high-performing woven lithium-ion fibre batteries. <i>Nature</i> , 2021 , 597, 57-63	50.4	69
264	Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life. <i>Advanced Energy Materials</i> , 2019 , 9, 1900853	21.8	67
263	Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 411-417	20.1	67
262	Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. <i>Chemical Communications</i> , 2011 , 47, 10701-3	5.8	66

(2013-2018)

261	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Batteries. <i>ACS Applied Materials &</i> Interfaces, 2018 , 10, 26178-26187	9.5	66	
260	A lithium air battery with a lithiated Al-carbon anode. <i>Chemical Communications</i> , 2015 , 51, 676-8	5.8	65	
259	Zinc-Organic Battery with a Wide Operation-Temperature Window from -70 to 150 °C. Angewandte Chemie - International Edition, 2020 , 59, 14577-14583	16.4	65	
258	An organic/inorganic electrode-based hydronium-ion battery. <i>Nature Communications</i> , 2020 , 11, 959	17.4	65	
257	A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. <i>Journal of Power Sources</i> , 2016 , 303, 333-339	8.9	65	
256	The development in aqueous lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2018 , 27, 1521-1535	12	65	
255	High Performance Hybrid Supercapacitor Based on Graphene-Supported Ni(OH)2-Nanowires and Ordered Mesoporous Carbon CMK-5. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A98-A104	3.9	65	
254	Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. <i>Applied Surface Science</i> , 2019 , 487, 1145-1151	6.7	64	
253	Efficient solar-driven electrocatalytic CO reduction in a redox-medium-assisted system. <i>Nature Communications</i> , 2018 , 9, 5003	17.4	64	
252	Robust Negative Electrode Materials Derived from Carbon Dots and Porous Hydrogels for High-Performance Hybrid Supercapacitors. <i>Advanced Materials</i> , 2019 , 31, e1806197	24	64	
251	Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16131-16135	16.4	64	
250	Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. <i>Journal of Power Sources</i> , 2015 , 276, 181-188	8.9	63	
249	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1300600	21.8	63	
248	Carbon Quantum Dot-Induced MnO Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 40394-40403	9.5	61	
247	Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. <i>ChemSusChem</i> , 2020 , 13, 2160-2185	8.3	59	
246	A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. <i>Chemical Communications</i> , 2010 , 46, 6305-7	5.8	59	
245	The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. <i>Journal of Power Sources</i> , 2011 , 196, 5611-5616	8.9	59	
244	Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1192-1200	13	58	

243	All-polymer particulate slurry batteries. <i>Nature Communications</i> , 2019 , 10, 2513	17.4	57
242	A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode. <i>Electrochemistry Communications</i> , 2006 , 8, 1775-1778	5.1	57
241	High-voltage aqueous battery approaching 3 V using an acidic-alkaline double electrolyte. <i>Chemical Communications</i> , 2013 , 49, 2204-6	5.8	56
240	Carbon nanocages with nanographene shell for high-rate lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9748		56
239	Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17111-17	120	56
238	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2047-2052	13	56
237	High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-carboxy-1,4-naphthoquinone. <i>ACS Energy Letters</i> , 2018 , 3, 2404-2409	20.1	56
236	Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. <i>RSC Advances</i> , 2016 , 6, 71581-71588	3.7	55
235	Flexible, Stretchable, and Rechargeable Fiber-Shaped ZincAir Battery Based on Cross-Stacked Carbon Nanotube Sheets. <i>Angewandte Chemie</i> , 2015 , 127, 15610-15614	3.6	55
234	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691	20.1	54
233	Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Ion Intercalated Compounds. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A228	3.9	54
232	Enhanced Electrochemical Capacitance of NiO Loaded on TiO[sub 2] Nanotubes. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A671	3.9	54
231	A new air electrode based on carbon nanotubes and AgMnO2 for metal air electrochemical cells. <i>Carbon</i> , 2004 , 42, 3097-3102	10.4	53
230	A Highly Reversible Long-Life Li-CO Battery with a RuP -Based Catalytic Cathode. <i>Small</i> , 2019 , 15, e1803	3246	53
229	Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer. <i>ACS Energy Letters</i> , 2019 , 4, 1725-1731	20.1	52
228	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable ZnBir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6282	-6289	52
227	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 20796-20803	9.5	51
226	Nature-Derived Approach to Oxygen and Chlorine Dual-Vacancies for Efficient Photocatalysis and Photoelectrochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 2395-2406	8.3	50

225	Transition in Manganese(II) Honeycomb Lattices. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15751-15757	16.4	50
224	A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 16606-1	€€16	50
223	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2741-2750	35.4	49
222	Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors. <i>ChemPhysChem</i> , 2014 , 15, 2084-93	3.2	49
221	A flexible symmetric sodium full cell constructed using the bipolar material Na3V2(PO4)3. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8440-8450	13	48
220	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study. <i>Inorganic Chemistry</i> , 2016 , 55, 5993-8	5.1	48
219	Pitch modified hard carbons as negative materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 74, 1-7	6.7	48
218	Boosting Polysulfide Redox Kinetics by Graphene-Supported Ni Nanoparticles with Carbon Coating. <i>Advanced Energy Materials</i> , 2020 , 10, 2000907	21.8	46
217	Low-Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. <i>Advanced Science</i> , 2020 , 7, 2000196	13.6	45
216	Ultrasmall TiO-Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Discrete Anode Materials & </i>	59.5	45
215	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2904	- 2 9 0 8	45
214	The roles of endoplasmic reticulum stress response in female mammalian reproduction. <i>Cell and Tissue Research</i> , 2016 , 363, 589-97	4.2	45
213	Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6064-6072	13	45
212	Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 193	7-1943	44
211	A large capacity of LiV3O8 cathode material for rechargeable lithium-based batteries. <i>Electrochimica Acta</i> , 2011 , 56, 1392-1398	6.7	44
210	A scalable hybrid separator for a high performance lithium-sulfur battery. <i>Chemical Communications</i> , 2015 , 51, 6996-9	5.8	43
209	Interface Engineering of Anchored Ultrathin TiO/MoS Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. <i>ACS Applied Materials & District Research</i> 10, 6084-6089	9.5	43
208	A Long-Life LithiumAir Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. <i>Angewandte Chemie</i> , 2017 , 129, 7613-7617	3.6	42

207	High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. <i>Nano Research</i> , 2019 , 12, 1713-1719	10	42
206	A flexible polymer-based Lillir battery using a reduced graphene oxide/Li composite anode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6022-6032	13	42
205	A clean and membrane-free chlor-alkali process with decoupled Cl and H/NaOH production. <i>Nature Communications</i> , 2018 , 9, 438	17.4	42
204	Low-cost and high-performance of a vertically grown 3D Ni E e layered double hydroxide/graphene aerogel supercapacitor electrode material. <i>RSC Advances</i> , 2016 , 6, 107278-107285	3.7	42
203	In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. <i>Energy and Environmental Science</i> , 2020 , 13, 2200-2208	35.4	41
202	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18322-18333	16.4	40
201	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 26834-26841	9.5	40
200	Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. <i>ChemSusChem</i> , 2019 , 12, 1118-1132	8.3	40
199	TiPO and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. <i>ACS Applied Materials & District Materia</i>	9.5	39
198	Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10902-10908	13	39
197	Cycling Stability of Spinel LiMn2O4 with Different Particle Sizes in Aqueous Electrolyte. <i>Electrochimica Acta</i> , 2015 , 173, 178-183	6.7	39
196	Carbon Coated Li4Ti5O12 Nanowire with High Electrochemical Performance under Elevated Temperature. <i>Electrochimica Acta</i> , 2015 , 156, 38-44	6.7	39
195	Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8214-8218	16.4	39
194	Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2013 , 36, 107-110	5.1	38
193	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3459	-3 ¹ 2 ² 67	38
192	High-Energy Rechargeable Metallic Lithium Battery at 🛭 0 🖒 Enabled by a Cosolvent Electrolyte. <i>Angewandte Chemie</i> , 2019 , 131, 5679-5683	3.6	38
191	Mesoporous Cd1-xZnxS microspheres with tunable bandgap and high specific surface areas for enhanced visible-light-driven hydrogen generation. <i>Journal of Colloid and Interface Science</i> , 2016 , 467, 97-104	9.3	37
190	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. <i>Nanoscale</i> , 2017 , 9, 1972-1977	7.7	36

189	Creating an Air-Stable Sulfur-Doped Black Phosphorus-TiO2 Composite as High-Performance Anode Material for Sodium-Ion Storage. <i>Advanced Functional Materials</i> , 2019 , 29, 1900535	15.6	36	
188	Graphene oxide assisted solvothermal synthesis of LiMnPO 4 naonplates cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 146, 8-14	6.7	36	
187	TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 3352	2 3.7	36	
186	All solid-state supercapacitor with phosphotungstic acid as the proton-conducting electrolyte. <i>Solid State Ionics</i> , 2004 , 166, 61-67	3.3	36	
185	All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. <i>Solid State Ionics</i> , 2017 , 300, 114-119	3.3	35	
184	Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping. <i>Journal of Alloys and Compounds</i> , 2019 , 790, 203-211	5.7	35	
183	Impact of hydrostatic pressure on the crystal structure and photoluminescence properties of Mn4+-doped BaTiF6 red phosphor. <i>Dalton Transactions</i> , 2015 , 44, 7578-85	4.3	35	
182	Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. <i>Journal of Power Sources</i> , 2019 , 437, 226917	8.9	35	
181	Sandwich-like Cr2O3graphite intercalation composites as high-stability anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1703-1708	13	35	
180	Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for LiftO2 batteries. <i>Electrochimica Acta</i> , 2019 , 299, 592-599	6.7	35	
179	Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn2O4 Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1503-1508	8.3	34	
178	A few-layered MoS nanosheets/nitrogen-doped graphene 3D aerogel as a high performance and long-term stability supercapacitor electrode. <i>Nanoscale</i> , 2019 , 11, 4318-4327	7.7	34	
177	Flowerlike vanadium sesquioxide: solvothermal preparation and electrochemical properties. <i>ChemPhysChem</i> , 2010 , 11, 3273-80	3.2	34	
176	Towards High Performance Li-S Batteries via Sulfonate-Rich COF-Modified Separator. <i>Advanced Materials</i> , 2021 , e2105178	24	34	
175	Space-Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3137-	£1642	34	
174	Electrochemical Profile of LiTi2(PO4)3and NaTi2(PO4)3in Lithium, Sodium or Mixed Ion Aqueous Solutions. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A904-A910	3.9	33	
173	High-Performance Li-Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. <i>ACS Applied Materials & Description of Materials & Description </i>	9.5	33	
172	A gel polymer electrolyte based lithium-sulfur battery with low self-discharge. <i>Solid State Ionics</i> , 2018 , 318, 82-87	3.3	32	

171	Low-cost and high safe manganese-based aqueous battery for grid energy storage and conversion. <i>Science Bulletin</i> , 2019 , 64, 1780-1787	10.6	31
170	A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery. <i>Electrochimica Acta</i> , 2019 , 310, 1-12	6.7	31
169	A high voltage cathode of Na2+2xFe2\(\text{Na2+2xFe2}\(\text{SO4}\)3 intensively protected by nitrogen-doped graphene with improved electrochemical performance of sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4354-4364	13	30
168	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCoO nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries. <i>Nanoscale</i> , 2017 , 9, 11	1 <i>4</i> 8-11	139
167	High performance Li D 2 battery using EMnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. <i>Electrochemistry Communications</i> , 2012 , 25, 26-29	5.1	30
166	Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets. <i>Nature Communications</i> , 2016 , 7, 12214	17.4	30
165	Black Phosphorus Stabilizing NaTiO/C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. <i>ACS Applied Materials & Discrete Sodium</i> , 10, 37163-37171	9.5	30
164	An additional discharge plateau of Mn3+ in LiFe0.5Mn0.5PO4 at high current rates. <i>Electrochemistry Communications</i> , 2015 , 55, 6-9	5.1	29
163	Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. <i>Nano Research</i> , 2018 , 11, 6436-6446	10	29
162	An All-Solid-State SodiumBulfur Battery Using a Sulfur/Carbonized Polyacrylonitrile Composite Cathode. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5263-5271	6.1	29
161	Preparation of nitrogen-containing mesoporous carbons and their application in supercapacitors. <i>New Journal of Chemistry</i> , 2013 , 37, 1768	3.6	29
160	A new type rechargeable lithium battery based on a Cu-cathode. <i>Electrochemistry Communications</i> , 2009 , 11, 1834-1837	5.1	29
159	Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9610-9617	16.4	29
158	Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. <i>Nano Energy</i> , 2021 , 83, 105847	17.1	29
157	Dual Lithiophilic Structure for Uniform Li Deposition. <i>ACS Applied Materials & Deposition and Materials & Deposition and Materials & Deposition and Materials & Deposition and Deposition</i>	9.5	29
156	Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4622-4626	16.4	28
155	Aqueous Lithium-Ion Batteries Using O2Self-Elimination Polyimides Electrodes. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A1972-A1977	3.9	28
154	ZincDrganic Battery with a Wide Operation-Temperature Window from 🛭 0 to 150 🖒 . <i>Angewandte Chemie</i> , 2020 , 132, 14685-14691	3.6	28

(2020-2016)

153	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. <i>Electrochimica Acta</i> , 2016 , 196, 300-308	6.7	28
152	A Nitrogen-doped Hierarchical Mesoporous/Microporous Carbon for Supercapacitors. <i>Electrochimica Acta</i> , 2014 , 146, 485-494	6.7	28
151	Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. <i>Nano Research</i> , 2017 , 10, 2495-2507	10	27
150	Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. <i>Reproductive Sciences</i> , 2015 , 22, 572-84	3	27
149	A coreEhell-structured TiO2(B) nanofiber@porous RuO2 composite as a carbon-free catalytic cathode for LiD2 batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21123-21132	13	27
148	High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode. <i>Electrochimica Acta</i> , 2017 , 228, 251-258	6.7	26
147	Li2TiSiO5 and expanded graphite nanocomposite anode material with Improved rate performance for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 260, 695-702	6.7	26
146	Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode. <i>Journal of Power Sources</i> , 2018 , 384, 10-17	8.9	25
145	Self-doping of Ti3+into Na2Ti3O7 increases both ion and electron conductivity as a high-performance anode material for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 767, 820-828	5.7	25
144	Promoting Rechargeable Batteries Operated at Low Temperature. <i>Accounts of Chemical Research</i> , 2021 , 54, 3883-3894	24.3	25
143	Stabilized Rechargeable Aqueous Zinc Batteries Using Ethylene Glycol as Water Blocker. <i>ChemSusChem</i> , 2020 , 13, 5556-5564	8.3	25
142	A Self-Healing Aqueous Lithium-Ion Battery. <i>Angewandte Chemie</i> , 2016 , 128, 14596-14600	3.6	25
141	Organic Flow Batteries: Recent Progress and Perspectives. <i>Energy & Description</i> 2020, 34, 13384-13411	4.1	24
140	A Multifunction Lithium Carbon Battery System Using a Dual Electrolyte. <i>ACS Energy Letters</i> , 2017 , 2, 36-44	20.1	23
139	van der Waals Epitaxial Growth and Interfacial Passivation of Two-Dimensional Single-Crystalline Few-Layer Gray Arsenic Nanoflakes. <i>Chemistry of Materials</i> , 2019 , 31, 4524-4535	9.6	23
138	Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor. <i>ChemSusChem</i> , 2018 , 11, 1741-1745	8.3	23
137	A novel direct borohydride fuel cell using an acidElkaline hybrid electrolyte. <i>Energy and Environmental Science</i> , 2010 , 3, 1515	35.4	23
136	Li/Garnet Interface Stabilization by Thermal-Decomposition Vapor Deposition of an Amorphous Carbon Layer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5346-5349	16.4	22

135	High-Performance LithiumAir Battery with a Coaxial-Fiber Architecture. <i>Angewandte Chemie</i> , 2016 , 128, 4563-4567	3.6	22
134	Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries. <i>Journal of Energy Chemistry</i> , 2014 , 23, 315-323	12	22
133	A hybrid aerogel of CoAl layered double hydroxide/graphene with three-dimensional porous structure as a novel electrode material for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 26017-26026	3.7	22
132	An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18940-18949	13	21
131	A novel rechargeable Li-AgO battery with hybrid electrolytes. <i>Chemical Communications</i> , 2010 , 46, 2055	5 -₹ .8	21
130	Controllable hydrogen generation from water. <i>ChemSusChem</i> , 2010 , 3, 571-4	8.3	21
129	Extra lithium-ion storage capacity enabled by liquid-phase exfoliated indium selenide nanosheets conductive network. <i>Energy and Environmental Science</i> , 2020 , 13, 2124-2133	35.4	20
128	Three-Dimensional Ordered Macroporous FePO as High-Efficiency Catalyst for Rechargeable Li-O Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 100 Batteries.	9.5	20
127	Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density. <i>Angewandte Chemie</i> , 2016 , 128, 7600-7603	3.6	20
126	High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets. Journal of Power Sources, 2017 , 364, 465-472	8.9	20
125	Industrial scale production of fibre batteries by a solution-extrusion method <i>Nature Nanotechnology</i> , 2022 ,	28.7	20
124	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium ir batteries. <i>Energy Storage Materials</i> , 2020 , 26, 593-603	19.4	20
123	EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. <i>BMC Plant Biology</i> , 2019 , 19, 235	5.3	19
122	Intercalation Pseudocapacitive Nanoscale Nickel [email[protected] Nanotubes as a High-Rate Cathode Material for Aqueous Sodium-Ion Battery. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3655-3663	8.3	19
121	Base-acid hybrid water electrolysis. <i>Chemical Communications</i> , 2016 , 52, 3147-50	5.8	19
120	CNT-Decorated NaMnCo(PO)PO Microspheres as a Novel High-Voltage Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Discrete Sodium-Ion Batteries</i> . <i>ACS Applied Materials & Discrete Sodium-Ion Batteries</i> .	9.5	19
119	Hemoglobin immobilized on whisker-like carbon composites and its direct electrochemistry. <i>Electrochimica Acta</i> , 2008 , 53, 4748-4753	6.7	19
118	Re-building Daniell cell with a Li-ion exchange film. <i>Scientific Reports</i> , 2014 , 4, 6916	4.9	18

(2020-2015)

117	Prognostic role of HOTAIR in four estrogen-dependent malignant tumors: a meta-analysis. OncoTargets and Therapy, 2015 , 8, 1471-82	4.4	18	
116	Pseudo-capacitive profile vs. Li-intercalation in Nano-LiFePO4. <i>Journal of Power Sources</i> , 2013 , 236, 230)-2337	18	
115	Highly Stable LithiumBulfur Batteries Achieved by a SnS/Porous Carbon Nanosheet Architecture Modified Celgard Separator. <i>Advanced Functional Materials</i> , 2020 , 30, 2006297	15.6	18	
114	Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 86-92	4.1	17	
113	Self-generated hollow NaTi2(PO4)3 nanocubes decorated with graphene as a large capacity and long lifetime anode for sodium-ion batteries. <i>RSC Advances</i> , 2017 , 7, 56743-56751	3.7	17	
112	Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 25624-25638	16.4	17	
111	A Thin-Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell. <i>Advanced Energy Materials</i> , 2013 , 3, 713-717	21.8	16	
110	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. <i>Cell Reports Physical Science</i> , 2020 , 1, 100138	6.1	16	
109	Chemically Self-Charging Aqueous Zinc-Organic Battery. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15369-15377	16.4	16	
108	Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping. <i>Journal of Colloid and Interface Science</i> , 2016 , 461, 185-194	9.3	15	
107	A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte. <i>Angewandte Chemie</i> , 2017 , 129, 9254-92	25386	15	
106	S0.87Se0.13/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery. <i>Electrochimica Acta</i> , 2018 , 281, 789-795	6.7	15	
105	Decoupled amphoteric water electrolysis and its integration with MnIn battery for flexible utilization of renewables. <i>Energy and Environmental Science</i> , 2021 , 14, 883-889	35.4	15	
104	A High-Voltage Zn-Organic Battery Using a Nonflammable Organic Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21025-21032	16.4	15	
103	Electrochemical Performance of Li4Ti5O12 Nanowire/Fe3O4 Nanoparticle Compound as Anode Material of Lithium Ion Batteries. <i>Electrochimica Acta</i> , 2017 , 241, 179-188	6.7	14	
102	Synthesis of ZnSb@C microflower composites and their enhanced electrochemical performance for lithium-ion and sodium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 13060-13066	3.6	14	
101	Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process. <i>Journal of Power Sources</i> , 2015 , 287, 370-376	8.9	14	
100	Li-air Battery with a Superhydrophobic Li-Protective Layer. <i>ACS Applied Materials & Discourse Company and Company</i>	9.5	14	

99	Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 18478-18489	3.6	14
98	Genome-Wide Identification and Expression Profiling of the Gene Family in L. Under Various Abiotic Stresses. <i>DNA and Cell Biology</i> , 2019 , 38, 1056-1068	3.6	14
97	Realizing both High Energy and High Power Densities by Twisting Three Carbon-Nanotube-Based Hybrid Fibers. <i>Angewandte Chemie</i> , 2015 , 127, 11329-11334	3.6	14
96	Graphite-anchored lithium vanadium oxide as anode of lithium ion battery. <i>Electrochimica Acta</i> , 2013 , 106, 534-540	6.7	14
95	Elastic, magnetic and electronic properties of iridium phosphide Ir2P. Scientific Reports, 2016, 6, 21787	4.9	14
94	A sulfur E ePO4 I nanocomposite cathode for stable and anti-self-discharge lithium E ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17926-17932	13	13
93	Improved electrochemical performance of a Li3V2(PO4)3 cathode in a wide potential window for lithium-ion storage by surface N-doped carbon coating and bulk K-doping. <i>New Journal of Chemistry</i> , 2017 , 41, 8772-8780	3.6	13
92	Molecular Tailoring of an n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20826-20832	16.4	13
91	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22930-22938	13	12
90	Hydrothermal synthesis and electrochemical performance of nanoparticle Li2FeSiO4/C cathode materials for lithium ion batteries. <i>Electrochimica Acta</i> , 2015 , 167, 340-347	6.7	12
89	A New Strategy of Constructing a Highly Fluorinated Solid-Electrolyte Interface towards High-Performance Lithium Anode. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000154	4.6	12
88	Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. <i>Angewandte Chemie</i> , 2018 , 130, 2954-2958	3.6	12
87	Positive Surface Pseudocapacitive Behavior-Induced Fast and Large Li-ion Storage in Mesoporous LiMnPO @C Nanofibers. <i>ChemSusChem</i> , 2019 , 12, 3817-3826	8.3	12
86	Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production. <i>Energy Storage Materials</i> , 2018 , 11, 260-266	19.4	12
85	A High-Rate and Long-Life Rechargeable Battery Operated at 🛚 5 oC. <i>Batteries and Supercaps</i> , 2020 , 3, 1016-1020	5.6	11
84	Garnet-Based All-Ceramic Lithium Battery Enabled by LiBOCl Solder. <i>IScience</i> , 2020 , 23, 101071	6.1	11
83	Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. <i>Journal of Power Sources</i> , 2020 , 451, 2277	3 <mark>4</mark> 9	11
82	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of NaTiO Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. <i>ACS Omega</i> , 2017 , 2, 5726-5736	3.9	11

(2019-2020)

81	Space-Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 3161-3166	3.6	11
80	Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries. <i>Electrochimica Acta</i> , 2019 , 296, 345-354	6.7	11
79	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. <i>Informa</i> Materily,	23.1	11
78	An all-climate CFx/Li battery with mechanism-guided electrolyte. <i>Energy Storage Materials</i> , 2021 , 42, 477-483	19.4	11
77	A dendrite-free Li plating host towards high utilization of Li metal anode in Li D 2 battery. <i>Science Bulletin</i> , 2019 , 64, 478-484	10.6	10
76	An aqueous manganeselead battery for large-scale energy storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5959-5967	13	10
75	Oxygen vacancies enhance the electrochemical performance of carbon-coated TiP2O7-y anode in aqueous lithium ion batteries. <i>Electrochimica Acta</i> , 2019 , 320, 134555	6.7	10
74	Note: Loading method of molecular fluorine using x-ray induced chemistry. <i>Review of Scientific Instruments</i> , 2014 , 85, 086110	1.7	10
73	Batteries: Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery (Adv. Mater. 8/2013). <i>Advanced Materials</i> , 2013 , 25, 1224-1224	24	10
72	Ultrathin Silicon Nanolayer Implanted NixSi/Ni Nanoparticles as Superlong-Cycle Lithium-Ion Anode Material. <i>Small Structures</i> , 2021 , 2, 2000126	8.7	10
71	The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. <i>Plant Biotechnology Journal</i> , 2021 , 19, 532-547	11.6	10
70	Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 8346-8350	3.6	10
69	Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. <i>Journal of Plant Biochemistry and Biotechnology</i> , 2019 , 28, 320-335	1.6	9
68	Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic Stress-Responsive Genes in Medicago sativa L <i>Journal of Plant Growth Regulation</i> , 2020 , 39, 32	4 ⁴ 3 ⁷ 3.7	9
67	Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. <i>BMC Plant Biology</i> , 2020 , 20, 165	5.3	9
66	Prevention of Na Corrosion and Dendrite Growth for Long-Life Flexible Na-Air Batteries. <i>ACS Central Science</i> , 2021 , 7, 335-344	16.8	9
65	Mechanism-of-Action Elucidation of Reversible Li-CO Batteries Using the Water-in-Salt Electrolyte. <i>ACS Applied Materials & Data Reversible</i> , 13, 7396-7404	9.5	9
64	A novel aqueous Li+ (or Na+)/Br[hybrid-ion battery with super high areal capacity and energy density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13050-13059	13	8

63	Energizing hybrid supercapacitors by using Mn2+-based active electrolyte. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15051-15057	13	8
62	High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. <i>RSC Advances</i> , 2016 , 6, 107355-107363	3.7	8
61	A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. <i>Angewandte Chemie</i> , 2017 , 129, 16833-16837	3.6	8
60	Anchoring an Artificial Solid E lectrolyte Interphase Layer on a 3D Current Collector for High-Performance Lithium Anodes. <i>Angewandte Chemie</i> , 2019 , 131, 2115-2119	3.6	8
59	Stable High-Voltage Aqueous Zinc Battery Based on Carbon-Coated NaVPO4F Cathode. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 3223-3231	8.3	8
58	Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. <i>Angewandte Chemie</i> , 2021 , 133, 25828	3.6	8
57	A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23858-23862	16.4	8
56	Ammonium-ion batteries with a wide operating temperature window from 20 to 80 LC. EScience, 2021 , 1, 212-218		8
55	Lithium ion storage in lithium titanium germanate. <i>Nano Energy</i> , 2019 , 66, 104094	17.1	7
54	Dynamic visualization of the phase transformation path in LiFePO during delithiation. <i>Nanoscale</i> , 2019 , 11, 17557-17562	7.7	7
53	Salt-rich solid electrolyte interphase for safer high-energy-density Li metal batteries with limited Li excess. <i>Chemical Communications</i> , 2020 , 56, 8257-8260	5.8	7
52	Transcriptome-Wide Characterization and Functional Identification of the Aquaporin Gene Family During Drought Stress in Common Vetch. <i>DNA and Cell Biology</i> , 2019 , 38, 374-384	3.6	7
51	Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries. <i>Chemical Engineering Journal</i> , 2021 , 425, 130660	14.7	7
50	Activity Origin and Catalyst Design Principles for Electrocatalytic Oxygen Evolution on Layered Transition Metal Oxide with Halogen Doping. <i>Small Structures</i> , 2021 , 2, 2100069	8.7	6
49	Manganese vanadium oxide hollow microspheres: a novel electrocatalyst for oxygen reduction reaction. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1743-1749	2.6	5
48	Niobium-Doped Titanosilicate Sitinakite Anode with Low Working Potential and High Rate for Sodium-Ion Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4399-4405	8.3	5
47	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. <i>Research</i> , 2019 , 2019, 7481319	7.8	5
46	Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes. <i>Angewandte Chemie</i> , 2021 , 133, 9696-9703	3.6	5

(2017-2021)

45	Mechanochemical Synthesis of Pt/NbCT MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. <i>Materials</i> , 2021 , 14,	3.5	5	
44	Direct View on the Origin of High Li+ Transfer Impedance in All-Solid-State Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2103971	15.6	5	
43	Flexible LithiumAir Battery in Ambient Air with an In Situ Formed Gel Electrolyte. <i>Angewandte Chemie</i> , 2018 , 130, 16363-16367	3.6	5	
42	Molecular Tailoring of an n/p-type Phenothiazine Organic Scaffold for Zinc Batteries. <i>Angewandte Chemie</i> , 2021 , 133, 20994-21000	3.6	5	
41	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. <i>Batteries and Supercaps</i> , 2019 , 2, 867-873	5.6	4	
40	New Insights into the Role of Autophagy in Ovarian Cryopreservation by Vitrification. <i>Biology of Reproduction</i> , 2016 , 94, 137	3.9	4	
39	A reduced graphene oxide/Cu6Sn5 nanocomposite with enhanced cycling stability for lithium storage. <i>Nanotechnology</i> , 2013 , 24, 424010	3.4	4	
38	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500496	4.6	4	
37	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries 2022 , 4, 190-204		4	
36	Hierarchical Sulfide-Rich Modification Layer on SiO/C Anode for Low-Temperature Li-Ion Batteries <i>Advanced Science</i> , 2022 , e2104531	13.6	4	
35	Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. <i>Angewandte Chemie</i> , 2019 , 131, 4670-4674	3.6	3	
34	Hypophosphites as Eco-Compatible Fuels for Membrane-Free Direct Liquid Fuel Cells. <i>Chemistry - A European Journal</i> , 2018 , 24, 10310-10314	4.8	3	
33	Sodium-ion Battery with a Wide Operation-Temperature Range from -70 to 100 LC <i>Angewandte Chemie - International Edition</i> , 2022 , e202116930	16.4	3	
32	Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. <i>BMC Genomics</i> , 2020 , 21, 715	4.5	3	
31	Na1.68H0.32Ti2O3SiO4ll.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. <i>ACS Applied Energy Materials</i> , 2018 ,	6.1	3	
30	Aqueous rechargeable zinc batteries: Challenges and opportunities. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100801	7.2	3	
29	A Highly Stable Li-Organic All-Solid-State Battery Based on Sulfide Electrolytes. <i>Advanced Energy Materials</i> ,2103932	21.8	3	
28	Nanosphere of Pb-modified bismuth-based borate photocatalysts. <i>Micro and Nano Letters</i> , 2017 , 12, 430-434	0.9	2	

27	Hierarchical microflanostructured and Al3+floped Li1.2Ni0.2Mn0.6O2 active materials with enhanced electrochemical properties as cathode materials for Lifbn batteries. <i>Scripta Materialia</i> , 2019 , 171, 47-51	5.6	2
26	Dual oxidation by hybrid electrode: Efficiency enhancement of direct hypophosphite fuel cell. Journal of Power Sources, 2019 , 438, 226983	8.9	2
25	Leaf-like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	2
24	A one-step way to novel carbon-niobium nitride nanoparticles for efficient oxygen reduction. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 638-646	3.8	2
23	Annealing-Free Platinum Dobalt Alloy Nanoparticles on Nitrogen-Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. <i>ChemElectroChem</i> , 2020 , 7, 3341-3346	4.3	2
22	Effects of organic solvents on morphologies, photoluminescence, and photocatalytic properties of ZnO nanostructures. <i>Micro and Nano Letters</i> , 2019 , 14, 1146-1150	0.9	2
21	Prussian Blue Cathode with Intercalation Pseudocapacitive Behavior for Low-Temperature Batteries. <i>Advanced Energy and Sustainability Research</i> ,2100105	1.6	2
20	A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature. <i>Angewandte Chemie</i> , 2021 , 133, 24051	3.6	2
19	Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from -60 to +55 °C. ACS Applied Materials & Interfaces, 2021 , 13, 45630-45638	9.5	2
18	One-Step Synthesis of Trirutile Oxides ZnBi2O6-Graphene Oxide with Enhanced Photocatalytic Activity. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 2006-2011	1.3	1
17	Catalytic Cathodes: A Highly Reversible Long-Life Li©O2 Battery with a RuP2-Based Catalytic Cathode (Small 29/2019). <i>Small</i> , 2019 , 15, 1970155	11	1
16	Building low-temperature batteries: non-aqueous or aqueous electrolyte?. <i>Current Opinion in Electrochemistry</i> , 2022 , 100949	7.2	1
15	Progress and Prospects in Redox Mediators for Highly Reversible Lithium Dxygen Batteries: A Minireview. <i>Energy & Dxygen Batteries</i> 2021, 35, 19302-19319	4.1	1
14	Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. <i>Plant Biotechnology Journal</i> , 2021 ,	11.6	1
13	One-step hydrothermal route to synthesise BiIO4/Bi2O2 (BO2 OH) heterostructure with improved photocatalytic performance. <i>Micro and Nano Letters</i> , 2017 , 12, 944-948	0.9	1
12	Hydrothermal two-dimensionalisation to porous ZnCo2O4 nanosheets non-platinum ORR catalyst. <i>Micro and Nano Letters</i> , 2019 , 14, 665-668	0.9	1
11	Topology design of digital metamaterials for ultra-compact integrated photonic devices based on mode manipulation. <i>Nanoscale Advances</i> , 2021 , 3, 4579-4588	5.1	1
10	REktitelbild: Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance (Angew. Chem. 30/2014). <i>Angewandte Chemie</i> , 2014 , 126, 8092-8092	3.6	O

LIST OF PUBLICATIONS

9	Fluorinated Carbon Materials and the Applications in Energy Storage Systems. <i>ACS Applied Energy Materials</i> ,	6.1	O
8	Hybrid electrolyte for advanced rechargeable batteries. <i>Science Bulletin</i> , 2020 , 65, 92-93	10.6	O
7	Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. <i>BMC Genomics</i> , 2019 , 20, 861	4.5	О
6	Green Synthesis and Optimization of 3D Nitrogen-Doped Carbon Network via Biomass Waste for Highly Efficient Bisphenol S Adsorption. <i>ChemistrySelect</i> , 2021 , 6, 6348-6352	1.8	O
5	A High-Voltage ZnDrganic Battery Using a Nonflammable Organic Electrolyte. <i>Angewandte Chemie</i> , 2021 , 133, 21193-21200	3.6	О
4	Capacitors: Novel Electric Double-Layer Capacitor with a Coaxial Fiber Structure (Adv. Mater. 44/2013). <i>Advanced Materials</i> , 2013 , 25, 6468-6468	24	
3	Pd Doped CoO Loaded on Carbon Nanofibers as Highly Efficient Free-Standing Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions <i>Frontiers in Chemistry</i> , 2021 , 9, 812375	5	
2	A universal method for rapid identification of alfalfa and burr medic seeds with an emphasis on discriminating different forage species. <i>Grass and Forage Science</i> , 2021 , 76, 353-362	2.3	
1	Cleistogamous spike and chasmogamous spike carbon remobilization improve the seed potential yield of Cleistogenes songorica under water stress. <i>Seed Science Research</i> ,1-12	1.3	