
## Michel Abdalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567290/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Password-Based Authenticated Key Exchange in the Three-Party Setting. Lecture Notes in Computer Science, 2005, , 65-84.                                                        | 1.3 | 430       |
| 2  | Searchable Encryption Revisited:ÂConsistency Properties, Relation to Anonymous IBE, and Extensions.<br>Lecture Notes in Computer Science, 2005, , 205-222.                     | 1.3 | 357       |
| 3  | The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. Lecture Notes in Computer Science, 2001, , 143-158.                                                            | 1.3 | 277       |
| 4  | Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions.<br>Journal of Cryptology, 2008, 21, 350-391.                               | 2.8 | 247       |
| 5  | Simple Password-Based Encrypted Key Exchange Protocols. Lecture Notes in Computer Science, 2005, ,<br>191-208.                                                                 | 1.3 | 201       |
| 6  | Simple Functional Encryption Schemes for Inner Products. Lecture Notes in Computer Science, 2015, , 733-751.                                                                   | 1.3 | 170       |
| 7  | From Identification to Signatures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security. Lecture Notes in Computer Science, 2002, , 418-433. | 1.3 | 120       |
| 8  | Robust Encryption. Lecture Notes in Computer Science, 2010, , 480-497.                                                                                                         | 1.3 | 82        |
| 9  | Interactive Diffie-Hellman Assumptions with Applications to Password-Based Authentication. Lecture Notes in Computer Science, 2005, , 341-356.                                 | 1.3 | 78        |
| 10 | Identity-Based Encryption Gone Wild. Lecture Notes in Computer Science, 2006, , 300-311.                                                                                       | 1.3 | 76        |
| 11 | Multi-input Inner-Product Functional Encryption from Pairings. Lecture Notes in Computer Science, 2017, , 601-626.                                                             | 1.3 | 68        |
| 12 | Password-Based Group Key Exchange in a Constant Number of Rounds. Lecture Notes in Computer Science, 2006, , 427-442.                                                          | 1.3 | 65        |
| 13 | One-Time Verifier-Based Encrypted Key Exchange. Lecture Notes in Computer Science, 2005, , 47-64.                                                                              | 1.3 | 60        |
| 14 | Smooth Projective Hashing for Conditionally Extractable Commitments. Lecture Notes in Computer Science, 2009, , 671-689.                                                       | 1.3 | 60        |
| 15 | Multi-Input Functional Encryption for Inner Products: Function-Hiding Realizations and Constructions Without Pairings. Lecture Notes in Computer Science, 2018, , 597-627.     | 1.3 | 58        |
| 16 | Tightly-Secure Signatures from Lossy Identification Schemes. Lecture Notes in Computer Science, 2012,<br>, 572-590.                                                            | 1.3 | 58        |
| 17 | Key management for restricted multicast using broadcast encryption. IEEE/ACM Transactions on Networking, 2000, 8, 443-454.                                                     | 3.8 | 57        |
|    |                                                                                                                                                                                |     |           |

18 Security of the J-PAKE Password-Authenticated Key Exchange Protocol. , 2015, , .

48

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Generalized Key Delegation for Hierarchical Identity-Based Encryption. Lecture Notes in Computer Science, 2007, , 139-154.                                                                               | 1.3 | 46        |
| 20 | Forward-Secure Threshold Signature Schemes. Lecture Notes in Computer Science, 2001, , 441-456.                                                                                                          | 1.3 | 42        |
| 21 | Disjunctions for Hash Proof Systems: New Constructions and Applications. Lecture Notes in Computer Science, 2015, , 69-100.                                                                              | 1.3 | 42        |
| 22 | Efficient Two-Party Password-Based Key Exchange Protocols in the UC Framework. Lecture Notes in Computer Science, 2008, , 335-351.                                                                       | 1.3 | 38        |
| 23 | A Scalable Password-Based Group Key Exchange Protocol in the Standard Model. Lecture Notes in Computer Science, 2006, , 332-347.                                                                         | 1.3 | 37        |
| 24 | Public-Key Encryption Indistinguishable Under Plaintext-Checkable Attacks. Lecture Notes in Computer<br>Science, 2015, , 332-352.                                                                        | 1.3 | 36        |
| 25 | Decentralizing Inner-Product Functional Encryption. Lecture Notes in Computer Science, 2019, ,<br>128-157.                                                                                               | 1.3 | 35        |
| 26 | Identity-Based Traitor Tracing. Lecture Notes in Computer Science, 2007, , 361-376.                                                                                                                      | 1.3 | 34        |
| 27 | SPHF-Friendly Non-interactive Commitments. Lecture Notes in Computer Science, 2013, , 214-234.                                                                                                           | 1.3 | 32        |
| 28 | Provably secure password-based authentication in TLS. , 2006, , .                                                                                                                                        |     | 31        |
| 29 | A Simple Threshold Authenticated Key Exchange from Short Secrets. Lecture Notes in Computer Science, 2005, , 566-584.                                                                                    | 1.3 | 31        |
| 30 | From Single-Input to Multi-client Inner-Product Functional Encryption. Lecture Notes in Computer Science, 2019, , 552-582.                                                                               | 1.3 | 31        |
| 31 | Verifiable Random Functions from Identity-Based Key Encapsulation. Lecture Notes in Computer Science, 2009, , 554-571.                                                                                   | 1.3 | 30        |
| 32 | Inner-Product Functional Encryption with Fine-Grained Access Control. Lecture Notes in Computer Science, 2020, , 467-497.                                                                                | 1.3 | 29        |
| 33 | Securing wireless sensor networks against aggregator compromises. , 2008, 46, 134-141.                                                                                                                   |     | 27        |
| 34 | From Identification to Signatures Via the Fiat–Shamir Transform: Necessary and Sufficient Conditions<br>for Security and Forward-Security. IEEE Transactions on Information Theory, 2008, 54, 3631-3646. | 2.4 | 26        |
| 35 | Related-Key Security for Pseudorandom Functions Beyond the Linear Barrier. Lecture Notes in<br>Computer Science, 2014, , 77-94.                                                                          | 1.3 | 26        |
| 36 | Wildcarded Identity-Based Encryption. Journal of Cryptology, 2011, 24, 42-82.                                                                                                                            | 2.8 | 25        |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Verifiable Random Functions: Relations to Identity-Based Key Encapsulation and New Constructions.<br>Journal of Cryptology, 2014, 27, 544-593.                         | 2.8 | 25        |
| 38 | (Password) Authenticated Key Establishment: From 2-Party to Group. Lecture Notes in Computer<br>Science, 2007, , 499-514.                                              | 1.3 | 25        |
| 39 | Strong password-based authentication in TLS using the three-party group Diffie Hellman protocol.<br>International Journal of Security and Networks, 2007, 2, 284.      | 0.2 | 24        |
| 40 | Anonymous and Transparent Gateway-Based Password-Authenticated Key Exchange. Lecture Notes in<br>Computer Science, 2008, , 133-148.                                    | 1.3 | 23        |
| 41 | Leakage-Resilient Symmetric Encryption via Re-keying. Lecture Notes in Computer Science, 2013, , 471-488.                                                              | 1.3 | 22        |
| 42 | Tightly Secure Signatures From Lossy Identification Schemes. Journal of Cryptology, 2016, 29, 597-631.                                                                 | 2.8 | 22        |
| 43 | On the Minimal Assumptions of Group Signature Schemes. Lecture Notes in Computer Science, 2004, ,<br>1-13.                                                             | 1.3 | 21        |
| 44 | Somewhat homomorphic encryption scheme for arithmetic operations on large integers. , 2012, , .                                                                        |     | 20        |
| 45 | On the (Im)possibility of Blind Message Authentication Codes. Lecture Notes in Computer Science, 2006, , 262-279.                                                      | 1.3 | 20        |
| 46 | Tighter Reductions for Forward-Secure Signature Schemes. Lecture Notes in Computer Science, 2013, ,<br>292-311.                                                        | 1.3 | 18        |
| 47 | Universally Composable Relaxed Password Authenticated Key Exchange. Lecture Notes in Computer<br>Science, 2020, , 278-307.                                             | 1.3 | 17        |
| 48 | Functional Encryption for Attribute-Weighted Sums from k-Lin. Lecture Notes in Computer Science, 2020, , 685-716.                                                      | 1.3 | 17        |
| 49 | Distributed Public-Key Cryptography from Weak Secrets. Lecture Notes in Computer Science, 2009, ,<br>139-159.                                                          | 1.3 | 16        |
| 50 | Contributory Password-Authenticated Group Key Exchange with Join Capability. Lecture Notes in<br>Computer Science, 2011, , 142-160.                                    | 1.3 | 15        |
| 51 | Generalised key delegation for hierarchical identity-based encryption. IET Information Security, 2008, 2, 67.                                                          | 1.7 | 14        |
| 52 | Towards Making Broadcast Encryption Practical. Lecture Notes in Computer Science, 1999, , 140-157.                                                                     | 1.3 | 14        |
| 53 | Robust Password-Protected Secret Sharing. Lecture Notes in Computer Science, 2016, , 61-79.                                                                            | 1.3 | 14        |
| 54 | Generalized Key Delegation for Wildcarded Identity-Based and Inner-Product Encryption. IEEE<br>Transactions on Information Forensics and Security, 2012, 7, 1695-1706. | 6.9 | 13        |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Robust Encryption. Journal of Cryptology, 2018, 31, 307-350.                                                                                                      | 2.8 | 12        |
| 56 | Password-Authenticated Group Key Agreement with Adaptive Security and Contributiveness. Lecture Notes in Computer Science, 2009, , 254-271.                       | 1.3 | 12        |
| 57 | An Algebraic Framework for Pseudorandom Functions and Applications to Related-Key Security.<br>Lecture Notes in Computer Science, 2015, , 388-409.                | 1.3 | 12        |
| 58 | Publicâ€key encryption indistinguishable under plaintextâ€checkable attacks. IET Information Security,<br>2016, 10, 288-303.                                      | 1.7 | 11        |
| 59 | Flexible Group Key Exchange with On-demand Computation of Subgroup Keys. Lecture Notes in<br>Computer Science, 2010, , 351-368.                                   | 1.3 | 10        |
| 60 | Security Analysis ofÂCPace. Lecture Notes in Computer Science, 2021, , 711-741.                                                                                   | 1.3 | 9         |
| 61 | Password-Based Authenticated Key Exchange: An Overview. Lecture Notes in Computer Science, 2014, ,<br>1-9.                                                        | 1.3 | 8         |
| 62 | Multi-Client Inner-Product Functional Encryption in the Random-Oracle Model. Lecture Notes in<br>Computer Science, 2020, , 525-545.                               | 1.3 | 8         |
| 63 | From Selective to Full Security: Semi-generic Transformations in the Standard Model. Lecture Notes in<br>Computer Science, 2012, , 316-333.                       | 1.3 | 8         |
| 64 | Robust Pseudo-Random Number Generators with Input Secure Against Side-Channel Attacks. Lecture<br>Notes in Computer Science, 2015, , 635-654.                     | 1.3 | 6         |
| 65 | Lattice-Based Hierarchical Inner Product Encryption. Lecture Notes in Computer Science, 2012, , 121-138.                                                          | 1.3 | 6         |
| 66 | Algebraic Adversaries inÂtheÂUniversal Composability Framework. Lecture Notes in Computer Science,<br>2021, , 311-341.                                            | 1.3 | 6         |
| 67 | Removing Erasures with Explainable Hash Proof Systems. Lecture Notes in Computer Science, 2017, ,<br>151-174.                                                     | 1.3 | 5         |
| 68 | Practical dynamic group signature with efficient concurrent joins and batch verifications. Journal of<br>Information Security and Applications, 2021, 63, 103003. | 2.5 | 5         |
| 69 | Pairing-Based Cryptography â $\in$ " Pairing 2012. Lecture Notes in Computer Science, 2013, , .                                                                   | 1.3 | 4         |
| 70 | Progress in Cryptology $\hat{a} \in \mathcal{C}$ LATINCRYPT 2010. Lecture Notes in Computer Science, 2010, , .                                                    | 1.3 | 4         |
| 71 | Secure architectures of future emerging cryptography <i>SAFEcrypto</i> ., 2016, , .                                                                               |     | 3         |
| 72 | Related-Key Security for Pseudorandom Functions Beyond the Linear Barrier. Journal of Cryptology, 2018, 31, 917-964.                                              | 2.8 | 3         |

| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | New technique for chosen-ciphertext security based on non-interactive zero-knowledge. Information Sciences, 2019, 490, 18-35.                                  | 6.9 | 3         |
| 74 | On the Tightness of Forward-Secure Signature Reductions. Journal of Cryptology, 2019, 32, 84-150.                                                              | 2.8 | 3         |
| 75 | Leakage-Resilient Spatial Encryption. Lecture Notes in Computer Science, 2012, , 78-99.                                                                        | 1.3 | 2         |
| 76 | Algebraic XOR-RKA-Secure Pseudorandom Functions from Post-Zeroizing Multilinear Maps. Lecture<br>Notes in Computer Science, 2019, , 386-412.                   | 1.3 | 2         |
| 77 | A Study of Blind Message Authentication Codes. IEICE Transactions on Fundamentals of Electronics,<br>Communications and Computer Sciences, 2007, E90-A, 75-82. | 0.3 | 1         |
| 78 | Multilinear and Aggregate Pseudorandom Functions: New Constructions and Improved Security.<br>Lecture Notes in Computer Science, 2015, , 103-120.              | 1.3 | 1         |
| 79 | Resisting against aggregator compromises in sensor networks. , 2006, , .                                                                                       |     | 0         |
| 80 | Improving Thomlinson-Walker's Software Patching Scheme Using Standard Cryptographic and<br>Statistical Tools. Lecture Notes in Computer Science, 2014, , 8-14. | 1.3 | 0         |
| 81 | Cryptology and Network Security. Lecture Notes in Computer Science, 2013, , .                                                                                  | 1.3 | 0         |