Douglas T Golenbock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567189/publications.pdf

Version: 2024-02-01

85 papers 26,050 citations

55 h-index 84 g-index

89 all docs 89 docs citations

89 times ranked

36150 citing authors

#	Article	IF	CITATIONS
1	Recurrent respiratory syncytial virus infection in a CD14 deficient patient. Journal of Infectious Diseases, 2022, , .	1.9	5
2	Lymphocyte crosstalk is required for monocyte-intrinsic trained immunity to Plasmodium falciparum. Journal of Clinical Investigation, 2022, 132 , .	3.9	11
3	The immunology of <i>Plasmodium vivax</i> malaria. Immunological Reviews, 2020, 293, 163-189.	2.8	38
4	Caspase-8 mediates inflammation and disease in rodent malaria. Nature Communications, 2020, 11, 4596.	5.8	11
5	Clostridioides difficile Toxin A Remodels Membranes and Mediates DNA Entry Into Cells to Activate Toll-Like Receptor 9 Signaling. Gastroenterology, 2020, 159, 2181-2192.e1.	0.6	11
6	Innate immune activation of the NLRP3 inflammasome pathway drives tau pathology. Alzheimer's and Dementia, 2020, 16, e039815.	0.4	0
7	CXCR3 chemokine receptor contributes to specific CD8+ÂT cell activation by pDC during infection with intracellular pathogens. PLoS Neglected Tropical Diseases, 2020, 14, e0008414.	1.3	9
8	Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight, 2020, 5, .	2.3	68
9	Systemic inflammation impairs microglial AÎ ² clearance through <scp>NLRP</scp> 3 inflammasome. EMBO Journal, 2019, 38, e101064.	3.5	226
10	Platelet-activating factor (PAF) mediates NLRP3-NEK7 inflammasome induction independently of PAFR. Journal of Experimental Medicine, 2019, 216, 2838-2853.	4.2	41
11	The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathogens, 2019, 15, e1007684.	2.1	28
12	The Single Nucleotide Polymorphism Mal-D96N Mice Provide New Insights into Functionality of Mal in TLR Immune Responses. Journal of Immunology, 2019, 202, 2384-2396.	0.4	2
13	NLRP3 inflammasome activation drives tau pathology. Nature, 2019, 575, 669-673.	13.7	782
14	Cutting Edge: <i>Plasmodium falciparum</i> Induces Trained Innate Immunity. Journal of Immunology, 2018, 200, 1243-1248.	0.4	101
15	Cyclic GMP–AMP Synthase Is the Cytosolic Sensor of <i>Plasmodium falciparum</i> Genomic DNA and Activates Type I IFN in Malaria. Journal of Immunology, 2018, 200, 768-774.	0.4	50
16	Targeting the IL33–NLRP3 axis improves therapy for experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7404-7409.	3.3	37
17	Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9002-9007.	3.3	41
18	miR-718 represses proinflammatory cytokine production through targeting phosphatase and tensin homolog (PTEN). Journal of Biological Chemistry, 2017, 292, 5634-5644.	1.6	43

#	Article	IF	Citations
19	Activation of the <scp>NLRP</scp> 3 inflammasome in microglia: the role of ceramide. Journal of Neurochemistry, 2017, 143, 534-550.	2.1	101
20	A guiding map for inflammation. Nature Immunology, 2017, 18, 826-831.	7.0	506
21	Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature, 2017, 552, 355-361.	13.7	664
22	Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay. PLoS ONE, 2017, 12, e0184843.	1.1	99
23	Group B Streptococcus Degrades Cyclic-di-AMP to Modulate STING-Dependent Type I Interferon Production. Cell Host and Microbe, 2016, 20, 49-59.	5.1	110
24	Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4. Cell Reports, 2016, 15, 2438-2448.	2.9	66
25	Control of the innate immune response by the mevalonate pathway. Nature Immunology, 2016, 17, 922-929.	7.0	159
26	A Fluorescent Reporter Mouse for Inflammasome Assembly Demonstrates an Important Role for Cell-Bound and Free ASC Specks during InÂVivo Infection. Cell Reports, 2016, 16, 571-582.	2.9	99
27	A Novel Factor H–Fc Chimeric Immunotherapeutic Molecule against <i>Neisseria gonorrhoeae</i> . Journal of Immunology, 2016, 196, 1732-1740.	0.4	35
28	A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling. Immunity, 2016, 44, 368-379.	6.6	30
29	Innate immunity in Alzheimer's disease. Nature Immunology, 2015, 16, 229-236.	7.0	619
30	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	4.9	4,129
31	Involvement of Nod2 in the innate immune response elicited by malarial pigment hemozoin. Microbes and Infection, 2015, 17, 184-194.	1.0	20
32	DNA-Containing Immunocomplexes Promote Inflammasome Assembly and Release of Pyrogenic Cytokines by CD14 ⁺ CD16 ⁺ CD64 ^{high} CD32 ^{low} Inflammatory Monocytes from Malaria Patients. MBio, 2015, 6, e01605-15.	1.8	37
33	LXR Agonism Upregulates the Macrophage ABCA1/Syntrophin Protein Complex That Can Bind ApoA-I and Stabilized ABCA1 Protein, but Complex Loss Does Not Inhibit Lipid Efflux. Biochemistry, 2015, 54, 6931-6941.	1.2	16
34	RNA and \hat{l}^2 -Hemolysin of Group B Streptococcus Induce Interleukin- \hat{l}^2 (IL- \hat{l}^2) by Activating NLRP3 Inflammasomes in Mouse Macrophages. Journal of Biological Chemistry, 2014, 289, 13701-13705.	1.6	62
35	The CD14+CD16+ Inflammatory Monocyte Subset Displays Increased Mitochondrial Activity and Effector Function During Acute Plasmodium vivax Malaria. PLoS Pathogens, 2014, 10, e1004393.	2.1	71
36	Malaria-Induced NLRP12/NLRP3-Dependent Caspase-1 Activation Mediates Inflammation and Hypersensitivity to Bacterial Superinfection. PLoS Pathogens, 2014, 10, e1003885.	2.1	134

#	Article	IF	CITATIONS
37	Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. International Journal of Medical Microbiology, 2014, 304, 384-392.	1.5	98
38	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	15.2	256
39	Innate sensing of malaria parasites. Nature Reviews Immunology, 2014, 14, 744-757.	10.6	260
40	3-Hydroxyl-3-methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitor (Statin)-induced 28-kDa Interleukin-1Î ² Interferes with Mature IL-1Î ² Signaling. Journal of Biological Chemistry, 2014, 289, 16214-16222.	1.6	27
41	Hemolysis-induced lethality involves inflammasome activation by heme. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4110-8.	3.3	263
42	Dual Engagement of the NLRP3 and AIM2 Inflammasomes by Plasmodium-Derived Hemozoin and DNA during Malaria. Cell Reports, 2014, 6, 196-210.	2.9	152
43	Metalloproteinase-Dependent TLR2 Ectodomain Shedding is Involved in Soluble Toll-Like Receptor 2 (sTLR2) Production. PLoS ONE, 2014, 9, e104624.	1.1	42
44	CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 2013, 14, 812-820.	7.0	746
45	NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493, 674-678.	13.7	2,063
46	The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus. PLoS Pathogens, 2013, 9, e1003179.	2.1	47
47	Activation of the NLRP3 Inflammasome by Group B Streptococci. Journal of Immunology, 2012, 188, 1953-1960.	0.4	127
48	An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 2012, 15, 827-835.	7.1	647
49	Innate Immune Recognition of an AT-Rich Stem-Loop DNA Motif in the Plasmodium falciparum Genome. Immunity, 2011, 35, 194-207.	6.6	234
50	Macrophages recognize streptococci through bacterial singleâ€stranded RNA. EMBO Reports, 2011, 12, 71-76.	2.0	65
51	Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3689-3694.	3.3	102
52	Malaria primes the innate immune response due to interferon- \hat{I}^3 induced enhancement of toll-like receptor expression and function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5789-5794.	3.3	179
53	MyD88 Adaptor-Like Is Not Essential for TLR2 Signaling and Inhibits Signaling by TLR3. Journal of Immunology, 2009, 183, 3642-3651.	0.4	98
54	A TIR Domain Variant of MyD88 Adapter-like (Mal)/TIRAP Results in Loss of MyD88 Binding and Reduced TLR2/TLR4 Signaling. Journal of Biological Chemistry, 2009, 284, 25742-25748.	1.6	62

#	Article	IF	Citations
55	MyD88 Adapter-like (Mal)/TIRAP Interaction with TRAF6 Is Critical for TLR2- and TLR4-mediated NF-κB Proinflammatory Responses. Journal of Biological Chemistry, 2009, 284, 24192-24203.	1.6	172
56	The NALP3 inflammasome is involved in the innate immune response to amyloid- \hat{l}^2 . Nature Immunology, 2008, 9, 857-865.	7.0	2,047
57	TLR-Independent Type I Interferon Induction in Response to an Extracellular Bacterial PathogenÂvia Intracellular Recognition of Its DNA. Cell Host and Microbe, 2008, 4, 543-554.	5.1	118
58	The Differential Impact of Disulfide Bonds and N-Linked Glycosylation on the Stability and Function of CD14. Journal of Biological Chemistry, 2008, 283, 3376-3384.	1.6	28
59	Recognition of Hyaluronan Released in Sterile Injury Involves a Unique Receptor Complex Dependent on Toll-like Receptor 4, CD44, and MD-2. Journal of Biological Chemistry, 2007, 282, 18265-18275.	1.6	345
60	Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1919-1924.	3.3	468
61	<i>Plasmodium falciparum</i> Infection Causes Proinflammatory Priming of Human TLR Responses. Journal of Immunology, 2007, 179, 162-171.	0.4	108
62	IMMUNOLOGY: The Shape of Things to Come. Science, 2007, 316, 1574-1576.	6.0	18
63	MyD88-dependent activation of dendritic cells and CD4+ T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes and Infection, 2007, 9, 881-890.	1.0	60
64	Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19794-19799.	3.3	162
65	The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6299-6304.	3.3	238
66	Pharmacological Inhibition of Endotoxin Responses Is Achieved by Targeting the TLR4 Coreceptor, MD-2. Journal of Immunology, 2005, 175, 6465-6472.	0.4	139
67	Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Medicine, 2004, 10, 416-421.	15.2	579
68	Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes and Infection, 2004, 6, 1361-1367.	1.0	355
69	Introduction: Toll receptors come of age. Microbes and Infection, 2004, 6, 1349-1350.	1.0	0
70	Monomeric and Polymeric Gram-Negative Peptidoglycan but Not Purified LPS Stimulate the Drosophila IMD Pathway. Immunity, 2004, 20, 637-649.	6.6	391
71	Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6593-6598.	3. 3	206
72	IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology, 2003, 4, 491-496.	7.0	2,361

#	Article	IF	Citations
73	Lysines 128 and 132 Enable Lipopolysaccharide Binding to MD-2, Leading to Toll-like Receptor-4 Aggregation and Signal Transduction. Journal of Biological Chemistry, 2003, 278, 48313-48320.	1.6	226
74	LPS-TLR4 Signaling to IRF-3/7 and NF-l ^o B Involves the Toll Adapters TRAM and TRIF. Journal of Experimental Medicine, 2003, 198, 1043-1055.	4.2	1,053
75	The Role of Lipopolysaccharide Binding Protein in Resistance toSalmonellaInfections in Mice. Journal of Immunology, 2002, 168, 6396-6403.	0.4	63
76	Lipopolysaccharide Rapidly Traffics to and from the Golgi Apparatus with the Toll-like Receptor 4-MD-2-CD14 Complex in a Process That Is Distinct from the Initiation of Signal Transduction. Journal of Biological Chemistry, 2002, 277, 47834-47843.	1.6	398
77	Cellular Activation, Phagocytosis, and Bactericidal Activity Against Group B Streptococcus Involve Parallel Myeloid Differentiation Factor 88-Dependent and Independent Signaling Pathways. Journal of Immunology, 2002, 169, 3970-3977.	0.4	130
78	Extolling the diversity of bacterial endotoxins. Nature Immunology, 2001, 2, 286-288.	7.0	36
79	TIRAP: how Toll receptors fraternize. Nature Immunology, 2001, 2, 828-830.	7.0	26
80	Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line. Journal of Experimental Medicine, 2001, 194, 79-88.	4.2	269
81	Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology, 2000, 1, 398-401.	7.0	1,482
82	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.4	205
83	LPS-binding proteins and receptors. Journal of Leukocyte Biology, 1998, 64, 25-32.	1.5	401
84	Engagement of the Lewis X Antigen (CD15) Results in Monocyte Activation. Blood, 1997, 89, 307-314.	0.6	33
85	Toll-Like Receptors. , 0, , 107-122.		O