
Eran Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3567027/publications.pdf Version: 2024-02-01

FDAN STADE

#	Article	IF	CITATIONS
1	High Fidelity Theta Phase Rolling of CA1 Neurons. Journal of Neuroscience, 2022, 42, 3184-3196.	1.7	12
2	Deconvolution improves the detection and quantification of spike transmission gain from spike trains. Communications Biology, 2022, 5, .	2.0	6
3	Network resonance can be generated independently at distinct levels of neuronal organization. PLoS Computational Biology, 2022, 18, e1010364.	1.5	7
4	Bidirectional Optogenetic Control of Inhibitory Neurons in Freely-Moving Mice. IEEE Transactions on Biomedical Engineering, 2021, 68, 416-427.	2.5	17
5	Outan: An On-Head System for Driving µLED Arrays Implanted in Freely Moving Mice. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 303-313.	2.7	3
6	A novel low-noise movement tracking system with real-time analog output for closed-loop experiments. Journal of Neuroscience Methods, 2019, 318, 69-77.	1.3	13
7	Response and sample bridging in a primate short-term memory task. Neurobiology of Learning and Memory, 2019, 166, 107106.	1.0	Ο
8	Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. Microsystems and Nanoengineering, 2018, 4, .	3.4	80
9	Spike-Centered Jitter Can Mistake Temporal Structure. Neural Computation, 2017, 29, 783-803.	1.3	12
10	Sharp wave ripples during learning stabilize the hippocampal spatial map. Nature Neuroscience, 2017, 20, 845-853.	7.1	146
11	Fiberless multicolor neural optoelectrode for in vivo circuit analysis. Scientific Reports, 2016, 6, 30961.	1.6	81
12	Local generation of multineuronal spike sequences in the hippocampal CA1 region. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10521-10526.	3.3	86
13	Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics. Neuron, 2015, 86, 92-105.	3.8	284
14	Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron, 2015, 88, 1136-1148.	3.8	372
15	Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice. Journal of Neuroscience, 2014, 34, 16509-16517.	1.7	121
16	In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Current Opinion in Neurobiology, 2014, 26, 88-95.	2.0	74
17	Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations. Neuron, 2014, 83, 467-480.	3.8	367
18	Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. Journal of Neurophysiology, 2014, 111, 1132-1149.	0.9	276

ERAN STARK

#	Article	IF	CITATIONS
19	An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Journal of Neural Engineering, 2013, 10, 056012.	1.8	162
20	Inhibition-Induced Theta Resonance in Cortical Circuits. Neuron, 2013, 80, 1263-1276.	3.8	292
21	Implantable neural probes for chronic electrical recording and optical stimulation. , 2013, , .		1
22	Large-scale Recording of Neurons by Movable Silicon Probes in Behaving Rodents. Journal of Visualized Experiments, 2012, , e3568.	0.2	78
23	GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nature Neuroscience, 2012, 15, 123-130.	7.1	258
24	Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. Journal of Neurophysiology, 2012, 108, 349-363.	0.9	229
25	Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats. Journal of Neuroscience, 2010, 30, 11476-11485.	1.7	345
26	The minimum information principle and its application to neural code analysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3490-3495.	3.3	30
27	Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Biological Cybernetics, 2009, 100, 159-184.	0.6	44
28	Unbiased estimation of precise temporal correlations between spike trains. Journal of Neuroscience Methods, 2009, 179, 90-100.	1.3	70
29	Motor cortical activity related to movement kinematics exhibits local spatial organization. Cortex, 2009, 45, 418-431.	1.1	28
30	Dependence of Neuronal Correlations on Filter Characteristics and Marginal Spike Train Statistics. Neural Computation, 2008, 20, 2133-2184.	1.3	69
31	Correlations between Groups of Premotor Neurons Carry Information about Prehension. Journal of Neuroscience, 2008, 28, 10618-10630.	1.7	32
32	Predicting Movement from Multiunit Activity. Journal of Neuroscience, 2007, 27, 8387-8394.	1.7	261
33	Comparison of Direction and Object Selectivity of Local Field Potentials and Single Units in Macaque Posterior Parietal Cortex During Prehension. Journal of Neurophysiology, 2007, 97, 3684-3695.	0.9	49
34	Encoding of Reach and Grasp by Single Neurons in Premotor Cortex Is Independent of Recording Site. Journal of Neurophysiology, 2007, 97, 3351-3364.	0.9	76
35	Distinct movement parameters are represented by different neurons in the motor cortex. European Journal of Neuroscience, 2007, 26, 1055-1066.	1.2	38
36	Partial Cross-Correlation Analysis Resolves Ambiguity in the Encoding of Multiple Movement Features. Journal of Neurophysiology, 2006, 95, 1966-1975.	0.9	38

ERAN STARK

#	Article	IF	CITATIONS
37	Spike sorting: Bayesian clustering of non-stationary data. Journal of Neuroscience Methods, 2006, 157, 303-316.	1.3	50
38	Applying resampling methods to neurophysiological data. Journal of Neuroscience Methods, 2005, 145, 133-144.	1.3	24
39	Neuronal Activity in Motor Cortical Areas Reflects the Sequential Context of Movement. Journal of Neurophysiology, 2004, 91, 1748-1762.	0.9	31
40	Dynamical Organization of Directional Tuning in the Primate Premotor and Primary Motor Cortex. Journal of Neurophysiology, 2003, 89, 1136-1142.	0.9	35