
Jürgen Krieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Pheromone-Binding Protein Mediates the Bombykol-Induced Activation of a Pheromone Receptor In Vitro. Chemical Senses, 2006, 31, 547-555.	1.1	248
2	Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences, 2018, 75, 485-508.	2.4	233
3	Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. European Journal of Neuroscience, 2007, 25, 2364-2373.	1.2	206
4	A divergent gene family encoding candidate olfactory receptors of the mothHeliothis virescens. European Journal of Neuroscience, 2002, 16, 619-628.	1.2	201
5	Antennal SNMPs (sensory neuron membrane proteins) of lepidoptera define a unique family of invertebrate CD36-like proteins. Journal of Neurobiology, 2001, 49, 47-61.	3.7	189
6	A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth <i>Antheraea polyphemus</i> . International Journal of Biological Sciences, 2009, 5, 745-757.	2.6	160
7	Differential Expression of SNMP-1 and SNMP-2 Proteins in Pheromone-Sensitive Hairs of Moths. Chemical Senses, 2008, 33, 291-299.	1.1	150
8	Candidate pheromone receptors of the silkmothBombyx mori. European Journal of Neuroscience, 2005, 21, 2167-2176.	1.2	110
9	Identification and Characterization of Two "Sensory Neuron Membrane Proteins―(SNMPs) of the Desert Locust, <i>Schistocerca gregaria</i> (Orthoptera: Acrididae). Journal of Insect Science, 2016, 16, 33.	0.6	92
10	Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cellular and Molecular Life Sciences, 2011, 68, 1799-1813.	2.4	81
11	The Olfactory Co-receptor Orco from the Migratory Locust (<i>Locusta migratoria</i>) and the Desert Locust (<i>Schistocerca gregaria</i>): Identification and Expression pattern. International Journal of Biological Sciences, 2012, 8, 159-170.	2.6	66
12	Insect Pheromone Receptors – Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience, 2018, 12, 425.	1.8	61
13	The role of SNMPs in insect olfaction. Cell and Tissue Research, 2021, 383, 21-33.	1.5	54
14	HR11 and HR13 Receptor-Expressing Neurons Are Housed Together in Pheromone-Responsive Sensilla Trichodea of Male Heliothis virescens. Chemical Senses, 2009, 34, 469-477.	1.1	52
15	Distinct Subfamilies of Odorant Binding Proteins in Locust (Orthoptera, Acrididae): Molecular Evolution, Structural Variation, and Sensilla-Specific Expression. Frontiers in Physiology, 2017, 8, 734.	1.3	51
16	In Search for Pheromone Receptors: Certain Members of the Odorant Receptor Family in the Desert Locust <i>Schistocerca gregaria</i> (Orthoptera: Acrididae) Are Co-expressed with SNMP1. International Journal of Biological Sciences, 2017, 13, 911-922.	2.6	49
17	Variant Ionotropic Receptors Are Expressed in Olfactory Sensory Neurons of Coeloconic Sensilla on the Antenna of the Desert Locust (<i>Schistocerca gregaria)</i> . International Journal of Biological Sciences, 2014, 10, 1-14.	2.6	48
18	Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Frontiers in Cellular Neuroscience, 2012, 6, 42,	1.8	47

Jürgen Krieger

#	Article	IF	CITATIONS
19	The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae. PLoS ONE, 2013, 8, e69412.	1.1	47
20	Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata. Scientific Reports, 2016, 6, 18576.	1.6	41
21	Sex-specific odorant receptors of the tobacco hornworm Manduca sexta. Frontiers in Cellular Neuroscience, 2010, 4, .	1.8	38
22	Immunolocalization of a candidate pheromone receptor in the antenna of the male moth, Heliothis virescens. Invertebrate Neuroscience, 2006, 6, 13-21.	1.8	35
23	Antennal expression pattern of two olfactory receptors and an odorant binding protein implicated in host odor detection by the malaria vector <i>Anopheles gambiae</i> . International Journal of Biological Sciences, 2010, 6, 614-626.	2.6	34
24	No Evidence for lonotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLoS ONE, 2016, 11, e0166060.	1.1	28
25	Larval sensilla of the moth <i>Heliothis virescens</i> respond to sex pheromone components. Insect Molecular Biology, 2016, 25, 666-678.	1.0	21
26	The Blunt Trichoid Sensillum of Female Mosquitoes, Anopheles gambiae: Odorant Binding Protein and Receptor Types. International Journal of Biological Sciences, 2014, 10, 426-437.	2.6	14
27	Odorant Binding Proteins of the Desert Locust Schistocerca gregaria (Orthoptera, Acrididae): Topographic Expression Patterns in the Antennae. Frontiers in Physiology, 2018, 9, 417.	1.3	14
28	The expression patterns of SNMP1 and SNMP2 underline distinct functions of two CD36-related proteins in the olfactory system of the tobacco budworm Heliothis virescens. Cell and Tissue Research, 2019, 378, 485-497.	1.5	12
29	Molecular Mechanism of Insect Olfaction: Olfactory Receptors. , 2019, , 93-114.		10
30	Molecular elements of pheromone detection in the female moth, <i>Heliothis virescens</i> . Insect Science, 2018, 25, 389-400.	1.5	9
31	SNMP1 and odorant receptors are co-expressed in olfactory neurons of the labial and maxillary palps from the desert locust Schistocerca gregaria (Orthoptera: Acrididae). Cell and Tissue Research, 2020, 379, 275-289.	1.5	9
32	A Subset of Odorant Receptors from the Desert Locust Schistocerca gregaria Is Co-Expressed with the Sensory Neuron Membrane Protein 1. Insects, 2019, 10, 350.	1.0	6
33	A small number of maleâ€biased candidate pheromone receptors are expressed in large subsets of the olfactory sensory neurons in the antennae of drones from the European honey bee <i>Apis mellifera</i> . Insect Science, 2022, 29, 749-766.	1.5	5
34	Molecular mechanisms of pheromone detection. , 2021, , 355-413.		4
35	The Sensilla-Specific Expression and Subcellular Localization of SNMP1 and SNMP2 Reveal Novel Insights into Their Roles in the Antenna of the Desert Locust Schistocerca gregaria. Insects, 2022, 13, 579.	1.0	4