Kangwon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/356659/publications.pdf

Version: 2024-02-01

471509 395702 1,971 36 17 33 citations h-index g-index papers 36 36 36 3827 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface, 2011, 8, 153-170.	3.4	1,150
2	Osteogenic/Angiogenic Dual Growth Factor Delivery Microcapsules for Regeneration of Vascularized Bone Tissue. Advanced Healthcare Materials, 2015, 4, 1982-1992.	7.6	88
3	Sustained Delivery of VEGF Maintains Innervation and Promotes Reperfusion in Ischemic Skeletal Muscles Via NGF/GDNF Signaling. Molecular Therapy, 2014, 22, 1243-1253.	8.2	77
4	Converting Waste Papers to Fluorescent Carbon Dots in the Recycling Process without Loss of Ionic Liquids and Bioimaging Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 4510-4515.	6.7	75
5	Label-free bacterial detection using polydiacetylene liposomes. Chemical Communications, 2016, 52, 10346-10349.	4.1	46
6	Polydiacetylene (PDA) Liposome-Based Immunosensor for the Detection of Exosomes. Biomacromolecules, 2019, 20, 3392-3398.	5.4	45
7	Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dental Materials, 2014, 30, e199-e207.	3.5	41
8	Use of gasotransmitters for the controlled release of polymer-based nitric oxide carriers in medical applications. Journal of Controlled Release, 2018, 279, 157-170.	9.9	39
9	Promotion of Vascular Morphogenesis of Endothelial Cells Co-Cultured with Human Adipose-Derived Mesenchymal Stem Cells Using Polycaprolactone/Gelatin Nanofibrous Scaffolds. Nanomaterials, 2018, 8, 117.	4.1	38
10	Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials, 2020, 232, 119732.	11.4	34
11	Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 6517-6530.	6.7	32
12	Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomaterialia, 2022, 141, 219-232.	8.3	31
13	Triculture Model of In Vitro BBB and its Application to Study BBBâ€Associated Chemosensitivity and Drug Delivery in Glioblastoma. Advanced Functional Materials, 2022, 32, 2106860.	14.9	27
14	Study on chemotaxis and chemokinesis of bone marrow-derived mesenchymal stem cells in hydrogel-based 3D microfluidic devices. Biomaterials Research, 2016, 20, 25.	6.9	24
15	The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Carbohydrate Polymers, 2018, 202, 488-496.	10.2	23
16	Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. International Journal of Molecular Sciences, 2021, 22, 2886.	4.1	22
17	An engineered neurovascular unit for modeling neuroinflammation. Biofabrication, 2021, 13, 035039.	7.1	18
18	Structures and strategies for enhanced sensitivity of polydiacetylene (PDA) based biosensor platforms. Biosensors and Bioelectronics, 2021, 181, 113120.	10.1	18

#	Article	IF	CITATIONS
19	Cardiovascular tissue regeneration system based on multiscale scaffolds comprising double-layered hydrogels and fibers. Scientific Reports, 2020, 10, 20321.	3.3	17
20	Enhanced NO-induced angiogenesis <i>via</i> NO/H ₂ S co-delivery from self-assembled nanoparticles. Biomaterials Science, 2021, 9, 5150-5159.	5 . 4	17
21	Multifunctionâ€Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo. Small, 2022, 18, e2200245.	10.0	17
22	Polydiacetylene Liposome Microarray toward Facile Measurement of Platelet Activation in Whole Blood. ACS Sensors, 2021, 6, 3170-3175.	7.8	14
23	Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosensors and Bioelectronics, 2021, 193, 113531.	10.1	13
24	Promotion of angiogenesis toward transplanted ovaries using nitric oxide releasing nanoparticles in fibrin hydrogel. Biofabrication, 2022, 14, 011001.	7.1	10
25	Multi-target polydiacetylene liposome-based biosensor for improved exosome detection. Sensors and Actuators B: Chemical, 2022, 355, 131286.	7.8	10
26	Bio-plotted hydrogel scaffold with core and sheath strand-enhancing mechanical and biological properties for tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111919.	5.0	9
27	Injectable thermoresponsive hydrogel/nanofiber hybrid scaffolds inducing human adipose-derived stem cell chemotaxis. Journal of Industrial and Engineering Chemistry, 2020, 82, 89-97.	5.8	8
28	pH-Sensitive Folic Acid Conjugated Alginate Nanoparticle for Induction of Cancer-Specific Fluorescence Imaging. Pharmaceutics, 2020, 12, 537.	4.5	6
29	On-Demand Local Immunomodulation via Epigenetic Control of Macrophages Using an Inflammation-Responsive Hydrogel for Accelerated Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4931-4945.	8.0	6
30	Effects of microenvironmental factors on assessing nanoparticle toxicity. Environmental Science: Nano, 2022, 9, 454-476.	4.3	5
31	Cancer Selective Turn-On Fluorescence Imaging Using a Biopolymeric Nanocarrier. Biomacromolecules, 2019, 20, 1068-1076.	5.4	4
32	Amplifying the Sensitivity of Polydiacetylene Sensors: The Dummy Molecule Approach. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14561-14567.	8.0	3
33	Development of Glycerol-Rose Bengal-Polidocanol (GRP) foam for enhanced sclerosis of a cyst for cystic diseases. PLoS ONE, 2021, 16, e0244635.	2.5	2
34	Ovarian Tissue-Based Hormone Replacement Therapy Recovers Menopause-Related Signs in Mice. Yonsei Medical Journal, 2022, 63, 648.	2.2	2
35	Chemotaxis of Mesenchymal Stem Cells in a Microfluidic Device. Materials Research Society Symposia Proceedings, 2012, 1498, 67-72.	0.1	0
36	Triculture Model of In Vitro BBB and its Application to Study BBBâ€Associated Chemosensitivity and Drug Delivery in Glioblastoma (Adv. Funct. Mater. 10/2022). Advanced Functional Materials, 2022, 32, .	14.9	0