List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Intimate Relationship Between Eriophyoid Mites and Their Host Plants – A Review. Frontiers in Plant Science, 2018, 9, 1786.	3.6	70
2	Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biological Control, 2008, 47, 16-21.	3.0	64
3	Monitoring of Target-Site Mutations Conferring Insecticide Resistance in Spodoptera frugiperda. Insects, 2020, 11, 545.	2.2	51
4	Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni. Experimental and Applied Acarology, 2012, 58, 259-278.	1.6	43
5	Grape downy mildew spread and mite seasonal abundance in vineyards: effects on Tydeus caudatus and its predators. Biological Control, 2005, 32, 143-154.	3.0	41
6	Grape downy mildew Plasmopara viticola, an alternative food for generalist predatory mites occurring in vineyards. Biological Control, 2008, 45, 441-449.	3.0	41
7	Grape downy mildew spread and mite seasonal abundance in vineyards: evidence for the predatory mites Amblyseius andersoni and Typhlodromus pyri. Biological Control, 2003, 27, 229-241.	3.0	40
8	Toxicity of thiamethoxam to <i>Tetranychus urticae</i> Koch and <i>Phytoseiulus persimilis</i> Athiasâ€Henriot (Acari Tetranychidae, Phytoseiidae) through different routes of exposure. Pest Management Science, 2011, 67, 352-359.	3.4	40
9	An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3:Âalternatives to systemic insecticides. Environmental Science and Pollution Research, 2021, 28, 11798-11820.	5.3	40
10	Arthropod Management in Vineyards:. , 2012, , .		38
11	Investigation on â€`bois noir' epidemiology in northâ€eastern Italian vineyards through a multidisciplinary approach. Annals of Applied Biology, 2015, 166, 75-89.	2.5	37
12	Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Experimental and Applied Acarology, 2012, 57, 53-64.	1.6	36
13	The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: Laboratory studies. Chemosphere, 2013, 93, 1139-1144.	8.2	35
14	Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program. Insects, 2021, 12, 316.	2.2	33
15	An Insight into the Role of Trissolcus mitsukurii as Biological Control Agent of Halyomorpha halys in Northeastern Italy. Insects, 2020, 11, 306.	2.2	32
16	Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards?. BioControl, 2009, 54, 369-382.	2.0	31
17	The impact of insecticides applied in apple orchards on the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae). Experimental and Applied Acarology, 2014, 62, 391-414.	1.6	31
18	Improving the compatibility of pesticides and predatory mites: recent findings on physiological and ecological selectivity. Current Opinion in Insect Science, 2020, 39, 63-68.	4.4	29

#	Article	IF	CITATIONS
19	Management of Phytophagous Mites in European Vineyards. , 2012, , 191-217.		26
20	Side effects of some fungicides on phytoseiid mites (Acari, Phytoseiidae) in north-Italian vineyards. Journal of Pest Science, 2002, 75, 132-136.	0.3	25
21	Grape powdery mildew as a food source for generalist predatory mites occurring in vineyards: effects on lifeâ€history traits. Annals of Applied Biology, 2009, 155, 81-89.	2.5	25
22	Resistance to chlorpyriphos in the predatory mite Kampimodromus aberrans. Experimental and Applied Acarology, 2012, 56, 1-8.	1.6	25
23	A method to assess the effects of pesticides on the predatory mite <i>Phytoseiulus persimilis</i> (Acari) Tj ETQq1	1 0.78431 1.3	4_rgBT /Ove
24	Surveys of stink bug egg parasitism in Asia, Europe and North America, morphological taxonomy, and molecular analysis reveal the Holarctic distribution of Acroclisoides sinicus (Huang & Liao) (Hymenoptera, Pteromalidae). Journal of Hymenoptera Research, 0, 74, 123-151.	0.8	24
25	Does pollen availability mitigate the impact of pesticides on generalist predatory mites?. BioControl, 2014, 59, 585-596.	2.0	23
26	The effects of fungicides on non-target mites can be mediated by plant pathogens. Chemosphere, 2010, 79, 8-17.	8.2	22
27	Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera:) Tj ETQq1	L 9.78431	4 rgBT /Over
28	Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards. Crop Protection, 2017, 98, 283-292.	2.1	21
29	Attraction of Halyomorpha halys (Hemiptera: Pentatomidae) haplotypes in North America and Europe to baited traps. Scientific Reports, 2017, 7, 16941.	3.3	21
30	Role of supplemental foods and habitat structural complexity in persistence and coexistence of generalist predatory mites. Scientific Reports, 2015, 5, 14997.	3.3	20
31	Single and combined releases of biological control agents against canopy- and soil-dwelling stages of Frankliniella occidentalis in cyclamen. BioControl, 2015, 60, 341-350.	2.0	20
32	Control of Scaphoideus titanus with Natural Products in Organic Vineyards. Insects, 2017, 8, 129.	2.2	19
33	A study of the effects of â€ [~] Candidatus Phytoplasma mali' on the psyllid Cacopsylla melanoneura (Hemiptera: Psyllidae). Journal of Invertebrate Pathology, 2010, 103, 65-67.	3.2	18
34	A Fundamental Step in IPM on Grapevine: Evaluating the Side Effects of Pesticides on Predatory Mites. Insects, 2015, 6, 847-857.	2.2	17
35	Characterizing damage potential of the brown marmorated stink bug in cherry orchards in Italy. Entomologia Generalis, 2019, 39, 271-283.	3.1	17
36	Insecticide drift and its effect on Kampimodromus aberrans (Oudemans) in an Italian vineyard-hedgerow system. Biosystems Engineering, 2013, 116, 447-456.	4.3	16

#	Article	IF	CITATIONS
37	Relative Infestation Level and Sensitivity of Grapevine Cultivars to the Leafhopper <i>Empoasca vitis</i> (Hemiptera: Cicadellidae). Journal of Economic Entomology, 2016, 109, 416-425.	1.8	14
38	Lethal Effects of High Temperatures on Brown Marmorated Stink Bug Adults before and after Overwintering. Insects, 2019, 10, 355.	2.2	14
39	Effects of Irrigation on the Seasonal Abundance of Empoasca vitis in North-Italian Vineyards. Journal of Economic Entomology, 2012, 105, 176-185.	1.8	13
40	Augmentative releases of the predatory mite Kampimodromus aberrans in organic and conventional apple orchards. Crop Protection, 2013, 52, 47-56.	2.1	13
41	Lethal and sub-lethal effects of low-temperature exposures on Halyomorpha halys (Hemiptera:) Tj ETQq1 1 0.784	1314 rgBT	/Oyerlock 10
42	A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance. Biological Control, 2015, 90, 75-82.	3.0	12
43	Comparing the Feeding Damage of the Invasive Brown Marmorated Stink Bug to a Native Stink Bug and Leaffooted Bug on California Pistachios. Insects, 2020, 11, 688.	2.2	11
44	Colonization Patterns, Phenology and Seasonal Abundance of the Nearctic Leafhopper Erasmoneura vulnerata (Fitch), a New Pest in European Vineyards. Insects, 2020, 11, 731.	2.2	11
45	Molecular and spatial analyses reveal new insights on Bois noir epidemiology in Franciacorta vineyards. Annals of Applied Biology, 2021, 179, 151-168.	2.5	11
46	Evaluation of a Fixed Spraying System for Phytosanitary Treatments in Heroic Viticulture in North-Eastern Italy. Agriculture (Switzerland), 2021, 11, 833.	3.1	11
47	Genomic Designing for Biotic Stress Resistant Grapevine. , 2022, , 87-255.		11
48	The Control of the American Leafhopper Erasmoneura vulnerata (Fitch) in European Vineyards: Impact of Synthetic and Natural Insecticides. Insects, 2021, 12, 85.	2.2	9
49	Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference. PLoS ONE, 2013, 8, e69663.	2.5	9
50	Pesticide side-effects on predatory mites: the role of trophic interactions. , 2010, , 465-469.		8
51	Vineyard Colonization by <i>Hyalesthes obsoletus</i> (Hemiptera: Cixiidae) Induced by Stinging Nettle Cut Along Surrounding Ditches. Journal of Economic Entomology, 2016, 109, 49-56.	1.8	8
52	Investigations on the Grape Leafhopper Erasmoneura vulnerata in North-Eastern Italy. Insects, 2019, 10, 44.	2.2	8
53	Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy. Insects, 2021, 12, 349.	2.2	8
54	Predation on heterospecific larvae by adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae). Experimental and Applied Acarology, 2015, 67, 1-20.	1.6	7

4

#	Article	IF	CITATIONS
55	Semi-natural habitats promote biological control of Halyomorpha halys (Stål) by the egg parasitoid Trissolcus mitsukurii (Ashmead). Biological Control, 2022, 166, 104833.	3.0	7
56	A novel set of microsatellite markers for the European Grapevine Moth Lobesia botrana isolated using next-generation sequencing and their utility for genetic characterization of populations from Europe and the Middle East. Bulletin of Entomological Research, 2015, 105, 408-416.	1.0	6
57	Invasive brown marmorated stink bug (Hemiptera: Pentatomidae) facilitates feeding of European wasps and ants (Hymenoptera: Vespidae, Formicidae) on plant exudates. European Journal of Entomology, 0, 118, 24-30.	1.2	6
58	Biological control of mites in European vineyards and the impact of natural vegetation. , 2010, , 399-407.		6
59	Airborne pollen can affect the abundance of predatory mites in vineyards: implications for conservation biological control strategies. Pest Management Science, 2022, 78, 1963-1975.	3.4	6
60	Feeding habits of overwintered predatory mites inhabiting European vineyards. BioControl, 2015, 60, 605-615.	2.0	5
61	Side Effects of Kaolin and Bunch-Zone Leaf Removal on Predatory Mite Populations (Acari:) Tj ETQq1 1 0.784314	rgBT /Ov	erlgck 10 Tf 5
62	Biological control of spider mites in North-Italian vineyards using pesticide resistant predatory mites. Acarologia, 2018, 58, 98-118.	0.6	5
63	The Impact of Microbial and Botanical Insecticides on Grape Berry Moths and Their Effects on Secondary Pests and Beneficials. Agronomy, 2022, 12, 217.	3.0	5
64	Hyperparasitism of Acroclisoides sinicus (Huang and Liao) (Hymenoptera: Pteromalidae) on Two Biological Control Agents of Halyomorpha halys. Insects, 2021, 12, 617.	2.2	4
65	Co-haplotyping symbiont and host to unravel invasion pathways of the exotic pest Halyomorpha halys in Italy. Scientific Reports, 2020, 10, 18441.	3.3	3
66	Insights in genetic diversity of German and Italian grape berry moth (Eupoecilia ambiguella) populations using novel microsatellite markers. Scientific Reports, 2021, 11, 4485.	3.3	3
67	Evaluating the Impact of Two Generalist Predators on the Leafhopper Erasmoneura vulnerata Population Density. Insects, 2021, 12, 321.	2.2	3
68	Influence of grapevine water stress on egg laying, egg hatching and nymphal survival of the green leafhopper Empoasca vitis. Entomologia Generalis, 2022, 42, 75-85.	3.1	3
69	Editorial: Ecosystem Services and Disservices Provided by Plant-Feeding Predatory Arthropods. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	2
70	Description and biogeographical implications of a new species of the genusPodismaBerthold 1827 from Mont Ventoux in South France (Orthoptera: Acrididae). Annales De La Societe Entomologique De France, 2007, 43, 9-26.	0.9	1
71	Availability of alternative foods can influence the impact of pesticides on predatory mites (Acari): a summary of the evidence* . Zoosymposia, 2011, 6, 124-130.	0.3	1