Katsuhiko Ariga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566252/publications.pdf

Version: 2024-02-01

907 papers 55,167 citations

118 h-index 193 g-index

988 all docs 988 docs citations

988 times ranked 39954 citing authors

#	Article	IF	Citations
1	Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1995, 117, 6117-6123.	6.6	1,382
2	Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007, 9, 2319.	1.3	1,143
3	Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chemistry Letters, 2014, 43, 36-68.	0.7	813
4	A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. Journal of Materials Chemistry A, 2013, 1, 14-19.	5.2	739
5	Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 2008, 9, 014109.	2.8	695
6	Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 1-32.	2.0	650
7	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.	2.2	624
8	Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. Journal of the American Chemical Society, 2012, 134, 2864-2867.	6.6	588
9	Direct Synthesis of MOFâ€Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small, 2014, 10, 2096-2107.	5. 2	588
10	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 2005, 17, 1648-1652.	11.1	512
11	Templated Synthesis for Nanoarchitectured Porous Materials. Bulletin of the Chemical Society of Japan, 2015, 88, 1171-1200.	2.0	512
12	Assembling Alternate Dyeâ^'Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption. Journal of the American Chemical Society, 1997, 119, 2224-2231.	6.6	503
13	Nanoarchitectonics for Dynamic Functional Materials from Atomicâ€∤Molecularâ€Level Manipulation to Macroscopic Action. Advanced Materials, 2016, 28, 1251-1286.	11.1	441
14	Alternate Assembly of Ordered Multilayers of SiO2and Other Nanoparticles and Polyions. Langmuir, 1997, 13, 6195-6203.	1.6	435
15	X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications, 2009, 149, 1919-1923.	0.9	421
16	25th Anniversary Article: What Can Be Done with the Langmuirâ€Blodgett Method? Recent Developments and its Critical Role in Materials Science. Advanced Materials, 2013, 25, 6477-6512.	11.1	411
17	Molecular Recognition at Airâ^'Water and Related Interfaces:Â Complementary Hydrogen Bonding and Multisite Interaction. Accounts of Chemical Research, 1998, 31, 371-378.	7.6	406
18	Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 762-771.	6.6	404

#	Article	IF	Citations
19	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	11.7	400
20	Mechanical Control of Nanomaterials and Nanosystems. Advanced Materials, 2012, 24, 158-176.	11.1	389
21	Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013, 42, 6322.	18.7	376
22	Molecular recognition: from solution science to nano/materials technology. Chemical Society Reviews, 2012, 41, 5800.	18.7	371
23	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369
24	Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Materials, 2012, 4, e17-e17.	3.8	366
25	Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95.	2.8	322
26	Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Threeâ€Component Coupling Reaction. Angewandte Chemie - International Edition, 2010, 49, 5961-5965.	7.2	321
27	Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Physical Chemistry Chemical Physics, 2014, 16, 9713.	1.3	319
28	Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. Journal of Molecular Catalysis A, 2007, 266, 149-157.	4.8	315
29	Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Physical Chemistry Chemical Physics, 2013, 15, 10580.	1.3	311
30	Nanoarchitectonics: A Conceptual Paradigm for Design and Synthesis of Dimension-Controlled Functional Nanomaterials. Journal of Nanoscience and Nanotechnology, 2011, 11, 1-13.	0.9	309
31	Recent Advances in Functionalization of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2005, 5, 347-371.	0.9	306
32	Characterization of Polyelectrolyteâ^Protein Multilayer Films by Atomic Force Microscopy, Scanning Electron Microscopy, and Fourier Transform Infrared Reflectionâ^Absorption Spectroscopy. Langmuir, 1998, 14, 4559-4565.	1.6	299
33	Layerâ€byâ€Layer Films of Graphene and Ionic Liquids for Highly Selective Gas Sensing. Angewandte Chemie - International Edition, 2010, 49, 9737-9739.	7.2	296
34	Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today, 2015, 10, 138-167.	6.2	284
35	Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 2010, 22, 323-336.	11.1	275
36	Formation of Ultrathin Multilayer and Hydrated Gel from Montmorillonite and Linear Polycations. Langmuir, 1996, 12, 3038-3044.	1.6	274

#	Article	IF	CITATIONS
37	Nanoarchitectonics: a new materials horizon for nanotechnology. Materials Horizons, 2015, 2, 406-413.	6.4	270
38	Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2017, 90, 967-1004.	2.0	257
39	Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221.	1.7	253
40	Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption., 1996, 51, 163-167.		243
41	The Way to Nanoarchitectonics and the Way of Nanoarchitectonics. Advanced Materials, 2016, 28, 989-992.	11.1	242
42	Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today, 2014, 9, 378-394.	6.2	236
43	Natural Tubule Clay Template Synthesis of Silver Nanorods for Antibacterial Composite Coating. ACS Applied Materials & Diterfaces, 2011, 3, 4040-4046.	4.0	235
44	Directing Assembly and Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery. ACS Applied Materials & Disassembly of 2D MoS ₂ Nanosheets with DNA for Drug Delivery.	4.0	232
45	A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 337-346.	2.3	229
46	Nanoarchitectonics: what's coming next after nanotechnology?. Nanoscale Horizons, 2021, 6, 364-378.	4.1	221
47	Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces. Journal of the American Chemical Society, 1996, 118, 8524-8530.	6.6	219
48	Biomaterial Immobilization in Nanoporous Carbon Molecular Sieves:  Influence of Solution pH, Pore Volume, and Pore Diameter. Journal of Physical Chemistry B, 2005, 109, 6436-6441.	1.2	219
49	Soft Langmuir–Blodgett Technique for Hard Nanomaterials. Advanced Materials, 2009, 21, 2959-2981.	11.1	219
50	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215
51	Regulation of \hat{I}^2 -Sheet Structures within Amyloid-Like \hat{I}^2 -Sheet Assemblage from Tripeptide Derivatives. Journal of the American Chemical Society, 1998, 120, 12192-12199.	6.6	208
52	Layered Paving of Vesicular Nanoparticles Formed with Cerasome as a Bioinspired Organicâ^'Inorganic Hybrid. Journal of the American Chemical Society, 2002, 124, 7892-7893.	6.6	208
53	Inorganic Nanoarchitectonics for Biological Applications. Chemistry of Materials, 2012, 24, 728-737.	3.2	206
54	What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polymer Journal, 2016, 48, 371-389.	1.3	205

#	Article	IF	CITATIONS
55	Fullerene Nanoarchitectonics: From Zero to Higher Dimensions. Chemistry - an Asian Journal, 2013, 8, 1662-1679.	1.7	198
56	Preparation of Highly Ordered Nitrogenâ€Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. Advanced Functional Materials, 2012, 22, 3596-3604.	7.8	194
57	Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter. Journal of Bioscience and Bioengineering, 1996, 82, 502-506.	0.9	190
58	Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catalysis Communications, 2007, 8, 1377-1382.	1.6	189
59	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
60	Solvent Engineering for Shape-Shifter <i>Pure</i> Fullerene (C ₆₀). Journal of the American Chemical Society, 2009, 131, 6372-6373.	6.6	183
61	Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. Journal of Bioscience and Bioengineering, 1999, 87, 69-75.	1.1	181
62	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 2007, 251, 2562-2591.	9.5	179
63	Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. Journal of Materials Chemistry, 2007, 17, 1819.	6.7	177
64	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	7.2	176
65	Bis(alkylguanidinium) receptors for phosphodiesters: effect of counterions, solvent mixtures, and cavity flexibility on complexation. Journal of the American Chemical Society, 1993, 115, 10042-10055.	6.6	175
66	Layer-by-Layer Assembly of Alternate Protein/Polyion Ultrathin Films. Chemistry Letters, 1994, 23, 2323-2326.	0.7	172
67	Selective, sensitive and reversible "turn-on―fluorescent cyanide probes based on 2,2′-dipyridylaminoanthracene–Cu2+ ensembles. Chemical Communications, 2012, 48, 11513.	2.2	170
68	Thinâ∈Filmâ∈Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Twoâ€Dimensional Worlds. Small, 2011, 7, 1288-1308.	5.2	169
69	Mechanical Control of Enantioselectivity of Amino Acid Recognition by Cholesterol-Armed Cyclen Monolayer at the Air-Water Interface. Journal of the American Chemical Society, 2006, 128, 14478-14479.	6.6	166
70	Nanocarbon Superhydrophobic Surfaces created from Fullereneâ€Based Hierarchical Supramolecular Assemblies. Advanced Materials, 2008, 20, 443-446.	11.1	165
71	MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chemistry Letters, 2014, 43, 717-719.	0.7	165
72	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. Chemistry of Materials, 2005, 17, 5887-5890.	3.2	164

#	Article	IF	CITATIONS
73	Catalytic nanoarchitectonics for environmentally compatible energy generation. Materials Today, 2016, 19, 12-18.	8.3	163
74	Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon, 2006, 44, 530-536.	5.4	162
75	<l>A Special Section on</l> Nanocomposites and Nanoporous Materials. Journal of Nanoscience and Nanotechnology, 2010, 10, 1-2.	0.9	157
76	Hierarchical supramolecular fullerene architectures with controlled dimensionality. Chemical Communications, 2005, , 5982.	2.2	156
77	New families of mesoporous materials. Science and Technology of Advanced Materials, 2006, 7, 753-771.	2.8	156
78	Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry, 2012, 22, 2369-2377.	6.7	156
79	The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chemical Reviews, 2022, 122, 6459-6513.	23.0	155
80	All-Metal Layer-by-Layer Films: Bimetallic Alternate Layers with Accessible Mesopores for Enhanced Electrocatalysis. Journal of the American Chemical Society, 2012, 134, 10819-10821.	6.6	154
81	Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Microporous and Mesoporous Materials, 2005, 80, 195-203.	2.2	153
82	Control of Morphology and Helicity of Chiral Mesoporous Silica. Advanced Materials, 2006, 18, 593-596.	11.1	151
83	Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems. Journal of Colloid and Interface Science, 2007, 311, 276-284.	5.0	151
84	Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on― cyanide probes. Chemical Communications, 2013, 49, 10136.	2.2	151
85	Supramolecular Chiral Nanoarchitectonics. Advanced Materials, 2020, 32, e1905657.	11.1	150
86	Nanoarchitectonics for Hybrid and Related Materials for Bioâ€Oriented Applications. Advanced Functional Materials, 2018, 28, 1702905.	7.8	149
87	Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn ₃ O ₄ . ACS Applied Materials & amp; Interfaces, 2014, 6, 3790-3793.	4.0	148
88	Two-dimensional nanoarchitectonics based on self-assembly. Advances in Colloid and Interface Science, 2010, 154, 20-29.	7.0	146
89	Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes. Langmuir, 1988, 4, 1373-1375.	1.6	145
90	A Condensable Amphiphile with a Cleavable Tail as a "Lizard―Template for the Solâ^'Gel Synthesis of Functionalized Mesoporous Silica. Journal of the American Chemical Society, 2004, 126, 988-989.	6.6	145

#	Article	IF	Citations
91	Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 2005, 15, 5122.	6.7	144
92	Electrochemical-Coupling Layer-by-Layer (ECC–LbL) Assembly. Journal of the American Chemical Society, 2011, 133, 7348-7351.	6.6	144
93	Layer-by-Layer Films of Dual-Pore Carbon Capsules with Designable Selectivity of Gas Adsorption. Journal of the American Chemical Society, 2009, 131, 4220-4221.	6.6	143
94	Don't Forget Langmuir–Blodgett Films 2020: Interfacial Nanoarchitectonics with Molecules, Materials, and Living Objects. Langmuir, 2020, 36, 7158-7180.	1.6	143
95	Preparation and Characterization of a Novel Organic–Inorganic Nanohybrid "Cerasome―Formed with a Liposomal Membrane and Silicate Surface. Chemistry - A European Journal, 2007, 13, 5272-5281.	1.7	142
96	Stimuli-Free Auto-Modulated Material Release from Mesoporous Nanocompartment Films. Journal of the American Chemical Society, 2008, 130, 2376-2377.	6.6	142
97	Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Airâ^'Water Interface. Journal of the American Chemical Society, 2000, 122, 7835-7836.	6.6	141
98	Fullerene Crystals with Bimodal Pore Architectures Consisting of Macropores and Mesopores. Journal of the American Chemical Society, 2013, 135, 586-589.	6.6	141
99	A Layered Mesoporous Carbon Sensor Based on Nanoporeâ€Filling Cooperative Adsorption in the Liquid Phase. Angewandte Chemie - International Edition, 2008, 47, 7254-7257.	7.2	140
100	A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. Journal of Materials Chemistry B, 2017, 5, 8854-8864.	2.9	139
101	Direct Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular Sieves. Chemistry of Materials, 2005, 17, 5339-5345.	3.2	138
102	Polymeric Micelle Assembly for Preparation of Large-Sized Mesoporous Metal Oxides with Various Compositions. Langmuir, 2014, 30, 651-659.	1.6	138
103	Hierarchically Structured Fullerene C ₇₀ Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano, 2016, 10, 6631-6637.	7.3	137
104	Enhanced imidazole-catalyzed RNA cleavage induced by a bis-alkylguanidinium receptor. Journal of the American Chemical Society, 1993, 115, 362-364.	6.6	134
105	One-Pot Separation of Tea Components through Selective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of the American Chemical Society, 2007, 129, 11022-11023.	6.6	134
106	Flowerâ€Shaped Supramolecular Assemblies: Hierarchical Organization of a Fullerene Bearing Long Aliphatic Chains. Small, 2007, 3, 2019-2023.	5.2	134
107	Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate. Journal of Physical Chemistry C, 2012, 116, 2683-2690.	1.5	134
108	Preparations of Langmuir-Blodgett films of enzyme-lipid complexes: A glucose sensor membrane. Thin Solid Films, 1989, 180, 65-72.	0.8	132

#	Article	IF	CITATIONS
109	Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear) Tj ETQq1 1 0.	784314 rg 0.8	BT /Overloo
110	Piezoluminescence at the Airâ^'Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application. Langmuir, 2005, 21, 976-981.	1.6	131
111	Room Temperature Liquid Fullerenes:Â An Uncommon Morphology of C60Derivatives. Journal of the American Chemical Society, 2006, 128, 10384-10385.	6.6	131
112	A Polymerâ€Electrolyteâ€Based Atomic Switch. Advanced Functional Materials, 2011, 21, 93-99.	7.8	130
113	β-Cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host–guest interactions with mechanical stimuli. Journal of Materials Chemistry B, 2013, 1, 2155.	2.9	130
114	First Synthesis of Phenylazomethine Dendrimer Ligands and Structural Studies. Journal of the American Chemical Society, 2001, 123, 4414-4420.	6.6	129
115	Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 2014, 38, 5149-5163.	1.4	128
116	Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials, 2007, 19, 4367-4372.	3.2	127
117	Perfectly Straight Nanowires of Fullerenes Bearing Long Alkyl Chains on Graphite. Journal of the American Chemical Society, 2006, 128, 6328-6329.	6.6	123
118	Visually resolving the direct Z-scheme heterojunction in CdS@Znln2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Applied Catalysis B: Environmental, 2021, 293, 120213.	10.8	123
119	Preparation of Organic-Inorganic Hybrid Vesicle "Cerasome―Derived from Artificial Lipid with Alkoxysilyl Head. Chemistry Letters, 1999, 28, 661-662.	0.7	122
120	Layer-by-Layer Self-Assembling of Liposomal Nanohybrid "Cerasome―on Substrates. Langmuir, 2002, 18, 6709-6711.	1.6	122
121	Immobilization of Biomaterials to Nano-Assembled Films (Self-Assembled Monolayers,) Tj ETQq1 1 0.784314 rgBT Nanoscience and Nanotechnology, 2006, 6, 2278-2301.	/Overlock 0.9	10 Tf 50 2 122
122	Kinetically Controlled Crystallization for Synthesis of Monodispersed Coordination Polymer Nanocubes and Their Selfâ€Assembly to Periodic Arrangements. Chemistry - A European Journal, 2013, 19, 1882-1885.	1.7	122
123	Ultrathin films of charged polysaccharides assembled alternately with linear polyions. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 345-355.	1.9	121
124	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	3.8	121
125	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Largeâ€Scale Tissue Engineering. Advanced Materials, 2015, 27, 4020-4026.	11.1	119
126	Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO ₂ ternary nanocomposites with electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 18480-18487.	5.2	118

#	Article	IF	CITATIONS
127	Layer-by-layer architectures of concanavalin A by means of electrostatic and biospecific interactions. Journal of the Chemical Society Chemical Communications, 1995, , 2313.	2.0	116
128	Nanoporous Carbon Tubes from Fullerene Crystals as the Ï€â€Electron Carbon Source. Angewandte Chemie - International Edition, 2015, 54, 951-955.	7.2	116
129	Mechanical Tuning of Molecular Recognition To Discriminate the Single-Methyl-Group Difference between Thymine and Uracil. Journal of the American Chemical Society, 2010, 132, 12868-12870.	6.6	113
130	Layerâ€by‣ayer Assembly: Recent Progress from Layered Assemblies to Layered Nanoarchitectonics. Chemistry - an Asian Journal, 2019, 14, 2553-2566.	1.7	113
131	Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers. Journal of the American Chemical Society, 1996, 118, 9545-9551.	6.6	112
132	Vortex-Aligned Fullerene Nanowhiskers as a Scaffold for Orienting Cell Growth. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15667-15673.	4.0	112
133	Theoretical Study of Intermolecular Interaction at the Lipidâ "Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory. Journal of Physical Chemistry B, 1997, 101, 4810-4816.	1.2	111
134	Putting the â€~N' in ACENE: Pyrazinacenes and their structural relatives. Organic and Biomolecular Chemistry, 2011, 9, 5005.	1.5	111
135	Langmuir Nanoarchitectonics from Basic to Frontier. Langmuir, 2019, 35, 3585-3599.	1.6	111
136	Color-Tunable Transparent Mesoporous Silica Films: Immobilization of One-Dimensional Columnar Charge-Transfer Assemblies in Aligned Silicate Nanochannels. Angewandte Chemie - International Edition, 2002, 41, 3414-3417.	7.2	108
137	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. Journal of Porous Materials, 2006, 13, 379-383.	1.3	107
138	Layer-by-layer assembly for drug delivery and related applications. Expert Opinion on Drug Delivery, 2011, 8, 633-644.	2.4	107
139	Biomaterials and Biofunctionality in Layered Macromolecular Assemblies. Macromolecular Bioscience, 2008, 8, 981-990.	2.1	106
140	Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous and Mesoporous Materials, 2008, 109, 398-404.	2.2	105
141	<l>A Special Issue on</l> : Advanced Materials for Nanoscience and Nanotechnology. Journal of Nanoscience and Nanotechnology, 2009, 9, 1-2.	0.9	104
142	NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nature Communications, 2013, 4, 2188.	5.8	103
143	Formation of metal clusters in halloysite clay nanotubes. Science and Technology of Advanced Materials, 2017, 18, 147-151.	2.8	102
144	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€byâ€Layer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie - International Edition, 2016, 55, 8426-8430.	7.2	101

#	Article	IF	Citations
145	Controlling the textural parameters of mesoporous carbon materials. Microporous and Mesoporous Materials, 2007, 100, 20-26.	2.2	100
146	Nanoarchitectonics: a navigator from materials to life. Materials Chemistry Frontiers, 2017, 1, 208-211.	3.2	100
147	Mechanochemical Tuning of the Binaphthyl Conformation at the Air–Water Interface. Angewandte Chemie - International Edition, 2015, 54, 8988-8991.	7.2	97
148	Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content. Journal of Physical Chemistry B, 2006, 110, 801-806.	1.2	96
149	Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface. Journal of the American Chemical Society, 1995, 117, 11833-11838.	6.6	95
150	Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development. Advanced Materials, 2012, 24, 150-151.	11.1	95
151	Nanoarchitectonics for carbon-material-based sensors. Analyst, The, 2016, 141, 2629-2638.	1.7	95
152	Manipulating the stoichiometry and strength of phosphodiester binding to a bisguanidine cleft in DMSO/water solutions. Journal of Organic Chemistry, 1992, 57, 417-419.	1.7	94
153	Anion-Complexation-Induced Stabilization of Charge Separation. Journal of the American Chemical Society, 2009, 131, 16138-16146.	6.6	93
154	Block-Copolymer-Nanowires with Nanosized Domain Segregation and High Charge Mobilities as Stacked p/n Heterojunction Arrays for Repeatable Photocurrent Switching. Journal of the American Chemical Society, 2009, 131, 18030-18031.	6.6	93
155	Chiral Sensing by Nonchiral Tetrapyrroles. Accounts of Chemical Research, 2015, 48, 521-529.	7.6	93
156	Tunable, Functional Carbon Spheres Derived from Rapid Synthesis of Resorcinol-Formaldehyde Resins. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10649-10655.	4.0	91
157	Theoretical Study of Intermolecular Interaction at the Lipidâ "Water Interface. 2. Analysis Based on the Poissonâ "Boltzmann Equation. Journal of Physical Chemistry B, 1997, 101, 4817-4825.	1.2	90
158	A Bottom-Up Approach toward Fabrication of Ultrathin PbS Sheets. Nano Letters, 2013, 13, 409-415.	4.5	90
159	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013, 1, 2913.	5.2	90
160	Open-Mouthed Metallic Microcapsules: Exploring Performance Improvements at Agglomeration-Free Interiors. Journal of the American Chemical Society, 2010, 132, 14415-14417.	6.6	89
161	Highly Crystalline and Conductive Nitrogenâ€Doped Mesoporous Carbon with Graphitic Walls and Its Electrochemical Performance. Chemistry - A European Journal, 2011, 17, 3390-3397.	1.7	89
162	Molecular Patterning of a Guanidinium/Orotate Mixed Monolayer through Molecular Recognition with Flavin Adenine Dinucleotide. Langmuir, 1997, 13, 519-524.	1.6	88

#	Article	IF	Citations
163	Enzyme-Encapsulated Layer-by-Layer Assemblies: Current Status and Challenges Toward Ultimate Nanodevices. Advances in Polymer Science, 2010, , 51-87.	0.4	88
164	Indium Oxide/Carbon Nanotube/Reduced Graphene Oxide Ternary Nanocomposite with Enhanced Electrochemical Supercapacitance. Bulletin of the Chemical Society of Japan, 2019, 92, 521-528.	2.0	88
165	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	2.0	88
166	Detection of the phase transition of Langmuir-Blodgett films on a quartz-crystal microbalance in an aqueous phase. Journal of the American Chemical Society, 1989, 111, 9190-9194.	6.6	87
167	Aligned 1-D Nanorods of a π-Gelator Exhibit Molecular Orientation and Excitation Energy Transport Different from Entangled Fiber Networks. Journal of the American Chemical Society, 2014, 136, 8548-8551.	6.6	86
168	Mesoporous carbon cubes derived from fullerene crystals as a high rate performance electrode material for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12654-12660.	5.2	86
169	Assemblies of Biomaterials in Mesoporous Media. Journal of Nanoscience and Nanotechnology, 2006, 6, 1510-1532.	0.9	85
170	Permeability controllable membranes. 11. Polymerized monolayers of single-, double-, and triple-chain silane amphiphiles and permeation control through the monolayer-immobilized porous glass plate in an aqueous solution. Journal of the American Chemical Society, 1989, 111, 5618-5622.	6.6	84
171	Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter, 2009, 5, 3562.	1.2	84
172	Ultra Narrow PbS Nanorods with Intense Fluorescence. Journal of the American Chemical Society, 2008, 130, 4594-4595.	6.6	83
173	Hierarchic Nanostructure for Autoâ€Modulation of Material Release: Mesoporous Nanocompartment Films. Advanced Functional Materials, 2009, 19, 1792-1799.	7.8	83
174	Superstructures and superhydrophobic property in hierarchical organized architectures of fullerenes bearing long alkyl tails. Journal of Materials Chemistry, 2010, 20, 1253-1260.	6.7	83
175	Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry. Coordination Chemistry Reviews, 2016, 320-321, 139-152.	9.5	82
176	Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth. ACS Nano, 2016, 10, 8796-8802.	7.3	82
177	Ultrathin films of inorganic materials (SiO2 nanoparticle, montmorillonite microplate, and) Tj ETQq1 1 0.784314 Science, 1999, 15, 137-152.	rgBT /Ove 2.6	erlock 10 Tf 5 81
178	Self-assembled microstructures of functional molecules. Current Opinion in Colloid and Interface Science, 2007, 12, 106-120.	3.4	81
179	Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions. Chemistry of Materials, 2014, 26, 519-532.	3.2	81
180	Mesoporous graphitic carbon microtubes derived from fullerene C ₇₀ tubes as a high performance electrode material for advanced supercapacitors. Journal of Materials Chemistry A, 2016, 4, 13899-13906.	5.2	81

#	Article	IF	Citations
181	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced Materials, 2022, 34, e2107212.	11.1	81
182	Threeâ€Dimensional Ultralargeâ€Pore <i>la</i> 3 <i>d</i> Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry - A European Journal, 2008, 14, 11529-11538.	1.7	80
183	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie - International Edition, 2018, 57, 9679-9683.	7.2	80
184	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. Advanced Materials, 2020, 32, e1905942.	11.1	80
185	Lowâ€Temperature Remediation of NO Catalyzed by Interleaved CuO Nanoplates. Advanced Materials, 2014, 26, 4481-4485.	11.1	79
186	Chiral recognition at the air–water interface. Current Opinion in Colloid and Interface Science, 2008, 13, 23-30.	3.4	77
187	Dynamic Breathing of CO ₂ by Hydrotalcite. Journal of the American Chemical Society, 2013, 135, 18040-18043.	6.6	77
188	Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation. Journal of Materials Chemistry A, 2015, 3, 6614-6619.	5.2	77
189	Atom/molecular nanoarchitectonics for devices and related applications. Nano Today, 2019, 28, 100762.	6.2	77
190	Novel Three Dimensional Cubic <i>Fm</i> 3 <i>m</i> Mesoporous Aluminosilicates with Tailored Cage Type Pore Structure and High Aluminum Content. Advanced Functional Materials, 2008, 18, 640-651.	7.8	75
191	Materials self-assembly and fabrication in confined spaces. Journal of Materials Chemistry, 2012, 22, 10389.	6.7	75
192	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
193	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
194	Effect of Surface Free Energy on PDMS Transfer in Microcontact Printing and Its Application to ToF-SIMS to Probe Surface Energies. Langmuir, 2009, 25, 5674-5683.	1.6	74
195	Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent. Journal of the American Chemical Society, 2009, 131, 9494-9495.	6.6	74
196	Increasing the Potential Interacting Area of Nanomedicine Enhances Its Homotypic Cancer Targeting Efficacy. ACS Nano, 2020, 14, 3259-3271.	7.3	74
197	A paradigm shift in the field of molecular recognition at the air–water interface: from static to dynamic. Soft Matter, 2006, 2, 465-477.	1.2	73
198	Shape-Dependent Confinement in Ultrasmall Zero-, One-, and Two-Dimensional PbS Nanostructures. Journal of the American Chemical Society, 2009, 131, 11282-11283.	6.6	73

#	Article	IF	Citations
199	Emerging trends in metal-containing block copolymers: synthesis, self-assembly, and nanomanufacturing applications. Journal of Materials Chemistry C, 2013, 1, 2080.	2.7	73
200	Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. Bulletin of the Chemical Society of Japan, 2017, 90, 955-962.	2.0	72
201	Chromogenic Indicator for Anion Reporting Based on an N-Substituted Oxoporphyrinogen. Inorganic Chemistry, 2006, 45, 8288-8296.	1.9	71
202	Phase Behavior of Monoglycerol Fatty Acid Esters in Nonpolar Oils:Â Reverse Rodlike Micelles at Elevated Temperatures. Journal of Physical Chemistry B, 2006, 110, 12266-12273.	1.2	70
203	Phase Behavior of Diglycerol Fatty Acid Estersâ°'Nonpolar Oil Systems. Langmuir, 2006, 22, 1449-1454.	1.6	70
204	Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models. Thin Solid Films, 2006, 499, 13-18.	0.8	70
205	A Mechanically Controlled Indicator Displacement Assay. Angewandte Chemie - International Edition, 2012, 51, 9643-9646.	7.2	70
206	Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air–water interface. Physical Chemistry Chemical Physics, 2016, 18, 12576-12581.	1.3	70
207	Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. ACS Applied Materials & Diblock Samp; Interfaces, 2017, 9, 18986-18993.	4.0	69
208	Silica-supported biomimetic membranes. Chemical Record, 2004, 3, 297-307.	2.9	68
209	Rapid Exchange between Atmospheric CO ₂ and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18352-18359.	4.0	68
210	Intentional Closing/Opening of "Hole-in-Cube―Fullerene Crystals with Microscopic Recognition Properties. ACS Nano, 2017, 11, 7790-7796.	7.3	68
211	Association between amphiphilic cyclodextrins and cholesterol in mixed insoluble monolayers at the air-water interface. Langmuir, 1989, 5, 111-113.	1.6	67
212	Effect of Melamineâ€Amphiphile Structure on the Extent of Twoâ€Dimensional Hydrogenâ€Bonded Networks Incorporating Barbituric Acid. Chemistry - A European Journal, 1997, 3, 1077-1082.	1.7	67
213	Tunable pK of Amino Acid Residues at the Airâ^'Water Interface Gives an L-zyme (Langmuir Enzyme). Journal of the American Chemical Society, 2005, 127, 12074-12080.	6.6	67
214	In Situ Electrochemical Deposition and Doping of C ₆₀ Films Applied to Highâ€Performance Inverted Organic Photovoltaics. Advanced Materials, 2012, 24, 5727-5731.	11.1	67
215	Surfactant-Assisted Assembly of Fullerene (C ₆₀) Nanorods and Nanotubes Formed at a Liquid–Liquid Interface. Langmuir, 2013, 29, 7195-7202.	1.6	67
216	Interfacial Nanoarchitectonics: Lateral and Vertical, Static and Dynamic. Langmuir, 2013, 29, 8459-8471.	1.6	67

#	Article	IF	Citations
217	Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 267-274.	1.9	67
218	Multisite Recognition of Aqueous Dipeptides by Oligoglycine Arrays Mixed with Guanidinium and Other Receptor Units at the Airâ "Water Interface. Langmuir, 1999, 15, 3875-3885.	1.6	66
219	Adsorption myoglobin over mesoporous silica molecular sieves: Pore size effect and pore-filling model. Materials Science and Engineering C, 2007, 27, 232-236.	3.8	66
220	Pyrazinacenes: Aza Analogues of Acenes. Journal of Organic Chemistry, 2009, 74, 8914-8923.	1.7	66
221	Demonstration of Ultrarapid Interfacial Formation of 1D Fullerene Nanorods with Photovoltaic Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15597-15603.	4.0	66
222	Nanoarchitectonics from Atom to Life. Chemistry - an Asian Journal, 2020, 15, 718-728.	1.7	66
223	Soft Nanoarchitectonics for Enantioselective Biosensing. Accounts of Chemical Research, 2020, 53, 644-653.	7.6	65
224	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. Bulletin of the Chemical Society of Japan, 2022, 95, 774-795.	2.0	65
225	Wormlike micelles in mixed amino acid-based anionic/nonionic surfactant systems. Journal of Colloid and Interface Science, 2008, 322, 596-604.	5.0	64
226	Ubiquinoneâ€Rhodol (UQâ€Rh) for Fluorescence Imaging of NAD(P)H through Intracellular Activation. Angewandte Chemie - International Edition, 2014, 53, 3993-3995.	7.2	64
227	Self-Assembly: From Amphiphiles to Chromophores and Beyond. Molecules, 2014, 19, 8589-8609.	1.7	64
228	Fabrication of Nanoporous Carbon Materials with Hard- and Soft-Templating Approaches: A Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3673-3685.	0.9	64
229	Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems. Science and Technology of Advanced Materials, 2012, 13, 053001.	2.8	63
230	Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous and Mesoporous Materials, 2021, 312, 110757.	2.2	63
231	Alternately Assembled Ultrathin Film of Silica Nanoparticles and Linear Polycations. Chemistry Letters, 1997, 26, 125-126.	0.7	62
232	Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. Physical Chemistry Chemical Physics, 2011, 13, 4895.	1.3	62
233	Nanoporous Carbon Sensor with Cage-in-Fiber Structure: Highly Selective Aniline Adsorbent toward Cancer Risk Management. ACS Applied Materials & Distriction (2013), 5, 2930-2934.	4.0	62
234	High purity graphenes prepared by a chemical intercalation method. Nanoscale, 2010, 2, 2139.	2.8	61

#	Article	IF	CITATIONS
235	Alcohol-induced decomposition of Olmstead's crystalline Ag(<scp>i</scp>)–fullerene heteronanostructure yields —bucky cubes'. Journal of Materials Chemistry C, 2013, 1, 1174-1181.	2.7	61
236	Highly ordered macro-mesoporous carbon nitride film for selective detection of acidic/basic molecules. Chemical Communications, 2014, 50, 5976-5979.	2.2	61
237	Construction of Coordination Nanosheets Based on Tris(2,2′-bipyridine)–lron (Fe ²⁺) Complexes as Potential Electrochromic Materials. ACS Applied Materials & Diterfaces, 2019, 11, 11893-11903.	4.0	61
238	Selfâ€Assembled Fullerene Nanostructures: Synthesis and Applications. Advanced Functional Materials, 2022, 32, 2106924.	7.8	61
239	Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS ₂ co-catalyst assembled CdS QDs/TiO ₂ photoelectrode. Chemical Communications, 2015, 51, 522-525.	2.2	60
240	Singleâ€Atom Catalysts. Small, 2021, 17, e2101584.	5 . 2	60
241	Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts. Sensors, 2010, 10, 6796-6820.	2.1	59
242	Control of nano/molecular systems by application of macroscopic mechanical stimuli. Chemical Science, 2011, 2, 195-203.	3.7	59
243	Research Update: Mesoporous sensor nanoarchitectonics. APL Materials, 2014, 2, .	2.2	59
244	Mesoporous fullerene C ₇₀ cubes with highly crystalline frameworks and unusually enhanced photoluminescence properties. Materials Horizons, 2018, 5, 285-290.	6.4	59
245	Shell-adjustable hollow  soft' silica spheres as a support for gold nanoparticles. Journal of Materials Chemistry A, 2013, 1, 3600.	5.2	58
246	Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nature Communications, 2016, 7, 11564.	5.8	58
247	Highly Networked Capsular Silica–Porphyrin Hybrid Nanostructures as Efficient Materials for Acetone Vapor Sensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9945-9954.	4.0	58
248	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Selfâ€Assembled Protein Monolayers. Small, 2019, 15, e1804640.	5.2	58
249	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	5.8	58
250	Nanoporous Activated Carbons Derived from Agro-Waste Corncob for Enhanced Electrochemical and Sensing Performance. Bulletin of the Chemical Society of Japan, 2015, 88, 1108-1115.	2.0	57
251	Visual Detection of Cesium Ions in Domestic Water Supply or Seawater using a Nano-optode. Bulletin of the Chemical Society of Japan, 2017, 90, 678-683.	2.0	57
252	Engineered functionalized 2D nanoarchitectures for stimuli-responsive drug delivery. Materials Horizons, 2020, 7, 455-469.	6.4	57

#	Article	IF	CITATIONS
253	Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 44458-44465.	4.0	57
254	Nanoarchitectonics. Japanese Journal of Applied Physics, 2016, 55, 1102A6.	0.8	56
255	Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami. Physical Chemistry Chemical Physics, 2017, 19, 23658-23676.	1.3	56
256	Template-Assisted Nano-Patterning: From the Submicron Scale to the Submolecular Level. Journal of Nanoscience and Nanotechnology, 2004, 4, 23-34.	0.9	55
257	Nanorodâ€Driven Orientational Control of Liquid Crystal for Polarizationâ€∓ailored Electroâ€Optic Devices. Advanced Materials, 2009, 21, 989-993.	11.1	55
258	Flakeâ€Shell Capsules: Adjustable Inorganic Structures. Small, 2012, 8, 2345-2349.	5.2	55
259	Interfaces Working for Biology: Solving Biological Mysteries and Opening Up Future Nanoarchitectonics. ChemNanoMat, 2016, 2, 333-343.	1.5	55
260	Conformation Manipulation and Motion of a Double Paddle Molecule on an Au(111) Surface. ACS Nano, 2017, 11, 10357-10365.	7.3	55
261	Molecular Recognition between 2,4,6-Triaminopyrimidine Lipid Monolayers and Complementary Barbituric Molecules at the Air/Water Interface:Ã Effects of Hydrophilic Spacer, Ionic Strength, and pH. Langmuir, 1998, 14, 5164-5171.	1.6	54
262	Tetrafluoroborate Salts as Site-Selective Promoters for Solâ^'Gel Synthesis of Mesoporous Silica. Journal of the American Chemical Society, 2004, 126, 9013-9016.	6.6	54
263	Supramolecular Templates for Nanoflake–Metal Surfaces. Chemistry - A European Journal, 2009, 15, 2763-2767.	1.7	54
264	Evolution of molecular machines: from solution to soft matter interface. Soft Matter, 2012, 8, 15-20.	1.2	54
265	Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. Nano Letters, 2015, 15, 4793-4798.	4.5	54
266	Suppression of Myogenic Differentiation of Mammalian Cells Caused by Fluidity of a Liquid–Liquid Interface. ACS Applied Materials & Diverfaces, 2017, 9, 30553-30560.	4.0	54
267	Recognition of aqueous flavin mononucleotide on the surface of binary monolayers of guanidinium and melamine amphiphiles. Journal of Materials Chemistry, 1997, 7, 1155-1161.	6.7	53
268	How molecules accommodate a 2D crystal lattice mismatch: an unusual â€ [~] mixedâ€ [™] conformation of tetraphenylporphyrin. Physical Chemistry Chemical Physics, 2006, 8, 5034-5037.	1.3	52
269	Multiâ€Dimensional Control of Surfactantâ€Guided Assemblies of Quantum Gold Particles. Advanced Materials, 2008, 20, 4027-4032.	11.1	52
270	Structure of Nonionic Surfactant (Glycerol α-Monomyristate) Micelles in Organic Solvents: A SAXS Study. Journal of Physical Chemistry B, 2009, 113, 6290-6298.	1.2	52

#	Article	IF	Citations
271	Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Materials Today, 2021, 44, 194-210.	8.3	52
272	Multi-site Recognition of Flavin Adenine Dinucleotide by Mixed Monolayers on Water. Chemistry Letters, 1995, 24, 701-702.	0.7	51
273	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 393-396.	1.1	51
274	Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. Journal of Carbon Research, 2019, 5, 10.	1.4	51
275	The evolution of molecular machines through interfacial nanoarchitectonics: from toys to tools. Chemical Science, 2020, 11, 10594-10604.	3.7	51
276	Nanoarchitectonics of Nanoporous Carbon Materials in Supercapacitors Applications. Nanomaterials, 2020, 10, 639.	1.9	51
277	Signal transduction mediated by artificial cell-surface receptors: activation of lactate dehydrogenase triggered by molecular recognition and phase reorganization of bile acid derivatives embedded in a synthetic bilayer membrane. Chemical Communications, 1999, , 547-548.	2.2	50
278	Naked-Eye Discrimination of Methanol from Ethanol Using Composite Film of Oxoporphyrinogen and Layered Double Hydroxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5927-5930.	4.0	50
279	Templateâ€Free Fabrication of Mesoporous Alumina Nanospheres Using Postâ€Synthesis Waterâ€Ethanol Treatment of Monodispersed Aluminium Glycerate Nanospheres for Molybdenum Adsorption. Small, 2018, 14, e1800474.	5.2	50
280	Catalysis of a Peptidic Micellar Assembly Covalently Immobilized within Mesoporous Silica Channels: Importance of Amphiphilic Spatial Design. Chemistry - A European Journal, 2007, 13, 1731-1736.	1.7	49
281	Viscoelastic Wormlike Micelles of Long Polyoxyethylene Chain Phytosterol with Lipophilic Nonionic Surfactant in Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 3043-3050.	1.2	49
282	Langmuir Nanoarchitectonics: One-Touch Fabrication of Regularly Sized Nanodisks at the Air–Water Interface. Langmuir, 2013, 29, 7239-7248.	1.6	49
283	Mesoporous Alumina as an Effective Adsorbent for Molybdenum (Mo) toward Instant Production of Radioisotope for Medical Use. Bulletin of the Chemical Society of Japan, 2017, 90, 1174-1179.	2.0	49
284	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	1.8	49
285	Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 2019, 5, 692-702.	1.5	49
286	Modulated Supramolecular Assemblies Composed of Tripeptide Derivatives:Â Formation of Micrometer-Scale Rods, Nanometer-Size Needles, and Regular Patterns with Molecular-Level Flatness from the Same Compound. Langmuir, 2000, 16, 4929-4939.	1.6	48
287	Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir, 2011, 27, 2340-2348.	1.6	48
288	Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process. Microporous and Mesoporous Materials, 2019, 274, 251-256.	2.2	47

#	Article	IF	CITATIONS
289	Manipulating the Structural Transformation of Fullerene Microtubes to Fullerene Microhorns Having Microscopic Recognition Properties. ACS Nano, 2019, 13, 14005-14012.	7.3	47
290	Atomic force microscopic observation of a dialkylmelamine monolayer on barbituric acid. Chemical Communications, 1996, , 1769.	2.2	46
291	Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Science and Technology of Advanced Materials, 2011, 12, 044602.	2.8	46
292	Thin Film Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 466-479.	1.9	46
293	Surfactant-Triggered Nanoarchitectonics of Fullerene C ₆₀ Crystals at a Liquid–Liquid Interface. Langmuir, 2016, 32, 12511-12519.	1.6	46
294	Mechanically Induced Opening–Closing Action of Binaphthyl Molecular Pliers: Digital Phase Transition versus Continuous Conformational Change. ChemPhysChem, 2017, 18, 1470-1474.	1.0	46
295	Molecularly Flat Films of Linear Polyions and Proteins Obtained by the Alternate Adsorption Method. Japanese Journal of Applied Physics, 1997, 36, L1608-L1611.	0.8	45
296	Syntheses and Interfacial Hydrogen-Bonded Network of Hexaalkyl Tris(Melamine) Amphiphiles. Langmuir, 1997, 13, 5426-5432.	1.6	45
297	Preparation of highly ordered mesoporous AlSBA-15 and its application to isopropylation of m-cresol. Journal of Molecular Catalysis A, 2005, 235, 57-66.	4.8	45
298	Shape, Size, and Structural Control of Reverse Micelles in Diglycerol Monomyristate Nonionic Surfactant System. Journal of Physical Chemistry B, 2007, 111, 1664-1671.	1.2	45
299	Operation of micro and molecular machines: a new concept with its origins in interface science. Physical Chemistry Chemical Physics, 2011, 13, 4802.	1.3	45
300	Colorimetric detection of trace water in tetrahydrofuran using N,N′-substituted oxoporphyrinogens. Chemical Communications, 2012, 48, 3933.	2.2	45
301	BiVO4/RGO hybrid nanostructure for high performance electrochemical supercapacitor. Journal of Solid State Chemistry, 2019, 269, 409-418.	1.4	45
302	Alternate Layer-by-Layer Assembly of Organic Dyes and Proteins is Facilitated by Pre-mixing with Linear Polyions. Chemistry Letters, 1997, 26, 25-26.	0.7	44
303	By what means should nanoscaled materials be constructed: molecule, medium, or human?. Nanoscale, 2010, 2, 198-214.	2.8	44
304	Enhanced Supercapacitor Performance of Nâ€Doped Mesoporous Carbons Prepared from a Gelatin Biomolecule. ChemPhysChem, 2013, 14, 1563-1569.	1.0	44
305	Nanoporous carbon materials with enhanced supercapacitance performance and non-aromatic chemical sensing with C ₁ /C ₂ alcohol discrimination. Science and Technology of Advanced Materials, 2016, 17, 483-492.	2.8	44
306	Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO _{<i>x</i>} Nanowire. ACS Applied Materials & Distriction of Supplied	4.0	44

#	Article	IF	Citations
307	Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance. Scientific Reports, 2017, 7, 41773.	1.6	44
308	Regulating the stability of 2D crystal structures using an oxidation state-dependent molecular conformation. Chemical Communications, 2006, , 2320.	2.2	43
309	Preparation and characterization of novel microporous carbon nitride with very high surface area via nanocasting technique. Microporous and Mesoporous Materials, 2008, 108, 340-344.	2.2	43
310	The Simplest Layer-by-Layer Assembly Structure: Best Paired Polymer Electrolytes with One Charge per Main Chain Carbon Atom for Multilayered Thin Films. Macromolecules, 2010, 43, 3947-3955.	2.2	43
311	Promoted C–C bond cleavage over intermetallic TaPt ₃ catalyst toward low-temperature energy extraction from ethanol. Energy and Environmental Science, 2015, 8, 1685-1689.	15.6	43
312	Detection of Ethanol in Alcoholic Beverages or Vapor Phase Using Fluorescent Molecules Embedded in a Nanofibrous Polymer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6189-6194.	4.0	43
313	From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31231-31238.	4.0	43
314	Mechanical and Physicochemical Properties of Newly Formed ZnO-PMMA Nanocomposites for Denture Bases. Nanomaterials, 2018, 8, 305.	1.9	43
315	Monolayer Studies of Single-Chain Polyprenyl Phosphates. Langmuir, 2005, 21, 4578-4583.	1.6	42
316	Self-Assembly Structures of a Phenol-Substituted Porphyrin in the Solid State:  Hydrogen Bonding, Kagomé Lattice, and Defect Tolerance. Journal of Physical Chemistry C, 2007, 111, 16174-16180.	1.5	42
317	Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin. Journal of Materials Chemistry A, 2016, 4, 5737-5744.	5.2	42
318	Neural differentiation on aligned fullerene C ₆₀ nanowhiskers. Chemical Communications, 2017, 53, 11024-11027.	2.2	42
319	Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces. Chemistry - an Asian Journal, 2018, 13, 1266-1278.	1.7	42
320	Molybdenum Adsorption Properties of Alumina-Embedded Mesoporous Silica for Medical Radioisotope Production. Bulletin of the Chemical Society of Japan, 2018, 91, 195-200.	2.0	42
321	Frictional properties of monomolecular layers of silane compounds. Thin Solid Films, 1989, 180, 287-291.	0.8	41
322	Heteropoly Acid Encapsulated SBAâ€15/TiO ₂ Nanocomposites and Their Unusual Performance in Acidâ€Catalysed Organic Transformations. Chemistry - A European Journal, 2008, 14, 3200-3212.	1.7	41
323	Unusual Magnetic Properties of Sizeâ€Controlled Iron Oxide Nanoparticles Grown in a Nanoporous Matrix with Tunable Pores. Angewandte Chemie - International Edition, 2009, 48, 7358-7361.	7.2	41
324	Structure of Polyglycerol Oleic Acid Ester Nonionic Surfactant Reverse Micelles in Decane: Growth Control by Headgroup Size. Langmuir, 2010, 26, 7015-7024.	1.6	41

#	Article	IF	CITATIONS
325	Monolayers at airâ€water interfaces: from originsâ€ofâ€life to nanotechnology. Chemical Record, 2011, 11, 199-211.	2.9	41
326	Chiral Guest Binding as a Probe of Macrocycle Dynamics and Tautomerism in a Conjugated Tetrapyrrole. Journal of the American Chemical Society, 2014, 136, 2112-2118.	6.6	41
327	Nanoarchitectonics to prepare practically useful artificial enzymes. Molecular Catalysis, 2019, 475, 110492.	1.0	41
328	Transparent Supercapacitor Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films. ACS Applied Materials & Display with Redox-Active Metallo-Supramolecular Polymer Films.	4.0	41
329	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. ACS Applied Nano Materials, 2020, 3, 6497-6506.	2.4	41
330	A Theoretical Interpretation of Remarkable Enhancement of Intermolecular Binding at the Lipid-Water Interface. Chemistry Letters, 1995, 24, 1001-1002.	0.7	40
331	Two-dimensional Molecular Patterning through Molecular Recognition. Chemistry Letters, 1996, 25, 411-412.	0.7	40
332	Characterization and Catalytic Performances of Three-Dimensional Mesoporous FeSBA-1 Catalysts. Journal of Physical Chemistry B, 2006, 110, 11924-11931.	1.2	40
333	Supramolecular Triad and Pentad Composed of Zinc–Porphyrin(s), Oxoporphyrinogen, and Fullerene(s): Design and Electron-Transfer Studies. Chemistry - A European Journal, 2007, 13, 4628-4635.	1.7	40
334	Nanomosaic:  Formation of Nanodomains Confined in a Two-Dimensional Molecular Plane. Langmuir, 2008, 24, 1682-1685.	1.6	40
335	Viscoelastic Wormlike Micelles in Mixed Nonionic Fluorocarbon Surfactants and Structural Transition Induced by Oils. Journal of Physical Chemistry B, 2009, 113, 1615-1622.	1.2	40
336	Langmuir Films of Unusual Components. Journal of Nanoscience and Nanotechnology, 2009, 9, 3-18.	0.9	40
337	Antibacterial Effect of Silver-Incorporated Flake-Shell Nanoparticles under Dual-Modality. ACS Applied Materials & Dual-Modality. ACS A	4.0	40
338	Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation. Japanese Journal of Applied Physics, 2016, 55, 1102A2.	0.8	40
339	Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chemistry - an Asian Journal, 2018, 13, 3366-3377.	1.7	40
340	Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as a High Rate Performance Supercapacitor Electrode Material. Bulletin of the Chemical Society of Japan, 2021, 94, 1502-1509.	2.0	40
341	Small-angle X-ray scattering (SAXS) study on nonionic fluorinated micelles in aqueous system. Journal of Colloid and Interface Science, 2007, 316, 815-824.	5.0	39
342	Recent Developments in Supramolecular Approach for Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 21-33.	0.9	39

#	Article	IF	Citations
343	Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. Chemical Communications, 2011, 47, 2285-2287.	2.2	39
344	Hierarchically Ordered Porous CoOOH Thinâ€Film Electrodes for Highâ€Performance Supercapacitors. ChemElectroChem, 2015, 2, 497-502.	1.7	39
345	Hexagonally ordered mesoporous highly acidic AlSBA-15 with different morphology: An efficient catalyst for acetylation of aromatics. Microporous and Mesoporous Materials, 2008, 116, 108-115.	2.2	38
346	Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. Colloid and Polymer Science, 2009, 287, 1305-1315.	1.0	38
347	Tunable Parameters for the Structural Control of Reverse Micelles in Glycerol Monoisostearate/Oil Systems: A SAXS Study. Langmuir, 2009, 25, 4435-4442.	1.6	38
348	Enhanced photocurrents via redox modulation by fluoride binding to oxoporphyrinogen in a zinc porphyrin-oxoporphyrinogen surface modified TiO2 supramolecular solar cell. Chemical Communications, 2011, 47, 6003.	2.2	38
349	Simultaneous Electropolymerization and Electro-Click Functionalization for Highly Versatile Surface Platforms. ACS Nano, 2014, 8, 5240-5248.	7.3	38
350	Nanoarchitectonics for Advanced Materials: Strategy Beyond Nanotechnology. Advanced Materials, 2016, 28, 987-988.	11.1	38
351	Molecular rotors confined at an ordered 2D interface. Physical Chemistry Chemical Physics, 2018, 20, 3073-3078.	1.3	38
352	Ratiometric immunoassays built from synergistic photonic absorption of size-diverse semiconducting MoS2 nanostructures. Materials Horizons, 2019, 6, 563-570.	6.4	38
353	Developments in Molecular Recognition and Sensing at Interfaces. International Journal of Molecular Sciences, 2007, 8, 864-883.	1.8	37
354	Bioactive flakeâ€"shell capsules: soft silica nanoparticles for efficient enzyme immobilization. Journal of Materials Chemistry B, 2013, 1, 3248.	2.9	37
355	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. Chemical Communications, 2017, 53, 236-239.	2.2	37
356	Selective CO ₂ Capture and High Proton Conductivity of a Functional Starâ€ofâ€David Catenane Metal–Organic Framework. Advanced Materials, 2017, 29, 1703301.	11.1	37
357	Review of advanced sensor devices employing nanoarchitectonics concepts. Beilstein Journal of Nanotechnology, 2019, 10, 2014-2030.	1.5	37
358	Self-Assembled Fullerene Crystals as Excellent Aromatic Vapor Sensors. Sensors, 2019, 19, 267.	2.1	37
359	100 °C-Langmuir–Blodgett Method for Fabricating Highly Oriented, Ultrathin Films of Polymeric Semiconductors. ACS Applied Materials & Semiconductors. ACS Applied	4.0	37
360	Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Science and Technology of Advanced Materials, 2022, 23, 199-224.	2.8	37

#	Article	IF	CITATIONS
361	Functional capsule membranes. Part 22. The electrical breakdown and permeability control of a bilayer-corked capsule membrane in an external electric field. Journal of the American Chemical Society, 1986, 108, 2863-2869.	6.6	36
362	In situ weighing of water-deposited Langmuir–Blodgett films on a piezoelectric quartz plate. Journal of the Chemical Society Chemical Communications, 1987, , 1535-1537.	2.0	36
363	Intrinsic Parameters for the Structure Control of Nonionic Reverse Micelles in Styrene: SAXS and Rheometry Studies. Langmuir, 2011, 27, 5862-5873.	1.6	36
364	Mechanical stretch for tunable wetting from topological PDMS film. Soft Matter, 2013, 9, 4236.	1.2	36
365	Micrometer-level naked-eye detection of caesium particulates in the solid state. Science and Technology of Advanced Materials, 2013, 14, 015002.	2.8	36
366	Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31896-31903.	4.0	36
367	Control of enzymic activity by artificial cell-surface receptors. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 977-984.	1.8	35
368	Phase Behavior and Self-Organized Structures of Diglycerol Monolaurate in Different Nonpolar Organic Solvents. Langmuir, 2007, 23, 6606-6613.	1.6	35
369	Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous and Mesoporous Materials, 2009, 121, 178-184.	2.2	35
370	Ultranarrow PbS Nanorod-Nematic Liquid Crystal Blend for Enhanced Electro-optic Properties. ACS Applied Materials & Diterfaces, 2010, 2, 2759-2766.	4.0	35
371	Reversible Photoredox Switching of Porphyrin-Bridged Bis-2,6-di- <i>tert</i> -butylphenols. Journal of the American Chemical Society, 2011, 133, 16119-16126.	6.6	35
372	Structural Requirements for Producing Solvent-Free Room Temperature Liquid Fullerenes. Langmuir, 2013, 29, 5337-5344.	1.6	35
373	In situ switching layer-by-layer assembly: one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization. Chemical Communications, 2013, 49, 6879.	2.2	35
374	Nanoarchitectonics of Molecular Aggregates: Science and Technology. Journal of Nanoscience and Nanotechnology, 2014, 14, 390-401.	0.9	35
375	Stimulation of Electro-oxidation Catalysis by Bulk-Structural Transformation in Intermetallic ZrPt ₃ Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16124-16130.	4.0	35
376	Commentary: Nanoarchitectonicsâ€" Think about NANO again. APL Materials, 2015, 3, 061001.	2.2	35
377	Monitoring Fluorescence Response of Amphiphilic Flapping Molecules in Compressed Monolayers at the Air–Water Interface. Chemistry - an Asian Journal, 2019, 14, 2869-2876.	1.7	35
378	Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Applied Surface Science, 2019, 487, 211-217.	3.1	35

#	Article	IF	Citations
379	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. Nanomaterials, 2020, 10, 728.	1.9	35
380	Recent advances in functionalization of mesoporous silica. Journal of Nanoscience and Nanotechnology, 2005, 5, 347-71.	0.9	35
381	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
382	In situ Characterization of Langmuir-Blodgett Films during a Transfer Process. Evaluation of Transfer Ratio and Water Incorporation by Using a Quartz Crystal Microbalance. Langmuir, 1994, 10, 3255-3259.	1.6	34
383	An Artificial Signal Transduction System. Control of Lactate Dehydrogenase Activity Performed by an Artificial Cell-surface Receptor. Chemistry Letters, 1999, 28, 253-254.	0.7	34
384	Structures, Spectral and Electrochemical Properties of N-(Naphth-2-ylmethyl)-Appended Porphyrinogens. European Journal of Organic Chemistry, 2005, 2005, 2893-2902.	1.2	34
385	Twisted, Two-Faced Porphyrins as Hosts for Bispyridyl Fullerenes: Construction and Photophysical Properties. Journal of Physical Chemistry C, 2008, 112, 10559-10572.	1.5	34
386	Effect of Lipophilic Tail Architecture and Solvent Engineering on the Structure of Trehalose-Based Nonionic Surfactant Reverse Micelles. Journal of Physical Chemistry B, 2010, 114, 12008-12017.	1.2	34
387	Size controlled ultranarrow PbS nanorods: spectroscopy and robust stability. Journal of Materials Chemistry, 2011, 21, 5671.	6.7	34
388	Synthesis and electrocatalytic performance of atomically ordered nickel carbide (Ni ₃ C) nanoparticles. Chemical Communications, 2014, 50, 6451-6453.	2.2	34
389	Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation. CrystEngComm, 2016, 18, 4890-4899.	1.3	34
390	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. ACS Nano, 2019, 13, 2410-2419.	7.3	34
391	Recent Progresses in Bio-Inorganic Nanohybrids. Current Nanoscience, 2006, 2, 197-210.	0.7	34
392	Specific binding of iodide ion to N-confused tetraphenylporphyrin (NC-TPP) at the air–water interface. Journal of the Chemical Society Perkin Transactions II, 1996, , 667-672.	0.9	33
393	Inter-Peptide Hydrogen Bonding in Monolayers of Oligoglycine Amphiphiles. Bulletin of the Chemical Society of Japan, 1996, 69, 163-168.	2.0	33
394	Silicotungstic acid/zirconia immobilized on SBA-15 for esterifications. Journal of Molecular Catalysis A, 2007, 271, 46-56.	4.8	33
395	Highly active three-dimensional cage type mesoporous aluminosilicates and their catalytic performances in the acetylation of aromatics. Microporous and Mesoporous Materials, 2008, 114, 303-311.	2.2	33
396	Rational Design and Synthesis of Cyanoâ€Bridged Coordination Polymers with PreciseÂ-Control of Particle Size from 20 to 500 nm. European Journal of Inorganic Chemistry, 2013, 2013, 3141-3145.	1.0	33

#	Article	IF	Citations
397	Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals. Nanotechnology, 2015, 26, 204002.	1.3	33
398	BODIPY based hyperbranched conjugated polymers for detecting organic vapors. Polymer Chemistry, 2016, 7, 4213-4225.	1.9	33
399	Vanadium sulfide/reduced graphene oxide composite with enhanced supercapacitance performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 72-79.	2.7	33
400	Chirality Sensing by Nonchiral Porphines. Chemistry - A European Journal, 2011, 17, 3558-3561.	1.7	32
401	Silica-based gene reverse transfection: an upright nanosheet network for promoted DNA delivery to cells. Chemical Communications, 2012, 48, 8496.	2.2	32
402	Nanoporous Activated Carbon Derived from Lapsi (<i>Choerospondias Axillaris</i>) Seed Stone for the Removal of Arsenic from Water. Journal of Nanoscience and Nanotechnology, 2012, 12, 7002-7009.	0.9	32
403	Intracellular Imaging of Cesium Distribution in <i>Arabidopsis</i> Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (i) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (ii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied Materials & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied & Distribution in <i> Arabidopsis (iii) Using Cesium Green. ACS Applied</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	4.0	32
404	Atomic architectonics, nanoarchitectonics and microarchitectonics for strategies to make junk materials work as precious catalysts. CrystEngComm, 2016, 18, 6770-6778.	1.3	32
405	Nanoarchitectonics from Molecular Units to Livingâ€Creatureâ€Like Motifs. Chemical Record, 2018, 18, 676-695.	2.9	32
406	Defect-free exfoliation of graphene at ultra-high temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 127-132.	2.3	32
407	DNAâ€Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Advanced Functional Materials, 2022, 32, .	7.8	32
408	Permeation control by a phase transition of the dialkylsilane monolayer immobilized on a porous glass plate. Journal of the Chemical Society Chemical Communications, 1986, , 1069.	2.0	31
409	Dynamic behavior of a transmembrane molecular switch as an artificial cell-surface receptor. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 971-976.	1.8	31
410	Toward Volatile and Nonvolatile Molecular Memories: Fluorescence Switching Based on Fluorideâ€Triggered Interconversion of Simple Porphyrin Derivatives. Chemistry - A European Journal, 2009, 15, 2486-2490.	1.7	31
411	Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. Journal of Materials Chemistry A, 2013, 1, 6262.	5.2	31
412	NbPt ₃ Intermetallic Nanoparticles: Highly Stable and COâ€Tolerant Electrocatalyst for Fuel Oxidation. ChemElectroChem, 2014, 1, 728-732.	1.7	31
413	Graphene composites with dental and biomedical applicability. Beilstein Journal of Nanotechnology, 2018, 9, 801-808.	1.5	31
414	Materials nanoarchitectonics at two-dimensional liquid interfaces. Beilstein Journal of Nanotechnology, 2019, 10, 1559-1587.	1.5	31

#	Article	IF	CITATIONS
415	Post-assembly dimension-dependent face-selective etching of fullerene crystals. Materials Horizons, 2020, 7, 787-795.	6.4	31
416	Interactions of Calcium Ions with Phospholipid Membranes. Studies on .piA Isotherms and Electrochemical and Quartz-Crystal Microbalance Measurements. Langmuir, 1994, 10, 2267-2271.	1.6	30
417	Real-time STM observation of molecular dynamics on a metal surface. Surface Science, 2007, 601, 3984-3987.	0.8	30
418	Nanostructured microspheres of MnO2formed by room temperature solution processing. Chemical Communications, 2008, , 383-385.	2.2	30
419	Fine tuning of the supercapacitive performance of nanoporous carbon electrodes with different pore diameters. Electrochimica Acta, 2012, 77, 256-261.	2.6	30
420	Going beyond the self-assembled monolayer: metal intercalated dithiol multilayers and their conductance. RSC Advances, 2014, 4, 39657-39666.	1.7	30
421	Dynamic multistimuli-responsive reversible chiral transformation in supramolecular helices. Scientific Reports, 2018, 8, 11220.	1.6	30
422	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	1.7	30
423	Molecular recognition at the air–water interface: nanoarchitectonic design and physicochemical understanding. Physical Chemistry Chemical Physics, 2020, 22, 24856-24869.	1.3	30
424	Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Materials Advances, 2021, 2, 582-597.	2.6	30
425	Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Science and Technology of Advanced Materials, 2022, 23, 393-412.	2.8	30
426	Control of the Molecular Packing in Guanidinium Monolayers through Binding with Aqueous Polycarboxylates. Bulletin of the Chemical Society of Japan, 1996, 69, 3619-3631.	2.0	29
427	Effect of guest capture modes on molecular recognition by a dynamic cavity array at the air–water interface: soft vs. tight and fast vs. slow. Soft Matter, 2005, 1, 132.	1.2	29
428	Porphyrin Colorimetric Indicators in Molecular and Nano-Architectures. Journal of Nanoscience and Nanotechnology, 2007, 7, 2969-2993.	0.9	29
429	Diverse Self-Assembly in Soluble Oligoazaacenes: A Microscopy Study. Langmuir, 2009, 25, 8408-8413.	1.6	29
430	Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. Journal of Materials Chemistry C, 2016, 4, 4967-4977.	2.7	29
431	Hydration Behavior of Phospholipid Langmuir-Blodgett (LB) Films Deposited on a Quartz-Crystal Microbalance Depending on Temperatures in Water. Langmuir, 1994, 10, 2272-2276.	1.6	28
432	Control of molecular ordering in guanidinium-functionalized monolayer by carboxylate template molecules. Chemical Communications, 1997, , 1357-1358.	2,2	28

#	Article	IF	Citations
433	Molecular dynamics simulation of water between hydrophobic surfaces. Implication for the long-range hydrophobic force. Chemical Physics Letters, 1998, 289, 567-571.	1.2	28
434	Dendritic Amphiphiles:Â Dendrimers Having an Amphiphile Structure in Each Unit. Langmuir, 2000, 16, 9147-9150.	1.6	28
435	Langmuir monolayer of organoalkoxysilane for vitamin B12-modified electrode. Physical Chemistry Chemical Physics, 2001, 3, 3442-3446.	1.3	28
436	Hydrophobic vitamin B12. Part 18. Preparation of a sol–gel modified electrode trapped with a vitamin B12derivative and its photoelectrochemical reactivity. Dalton Transactions, 2003, , 2308-2312.	1.6	28
437	Synthesis of highly acidic and well ordered MgAl-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Microporous and Mesoporous Materials, 2004, 76, 91-98.	2.2	28
438	Lysozyme Adsorption onto Mesoporous Materials: Effect of Pore Geometry and Stability of Adsorbents. Journal of Nanoscience and Nanotechnology, 2007, 7, 828-832.	0.9	28
439	Highly effective electrochemical anion sensing based on oxoporphyrinogen. Electrochemistry Communications, 2007, 9, 2751-2754.	2.3	28
440	Halogen-free acylation of toluene over FeSBA-1 molecular sieves. Microporous and Mesoporous Materials, 2007, 100, 87-94.	2.2	28
441	Supramolecular approaches to biological therapy. Expert Opinion on Biological Therapy, 2009, 9, 307-320.	1.4	28
442	Lowâ€Bandâ€Gap BODIPY Conjugated Copolymers for Sensing Volatile Organic Compounds. Chemistry - A European Journal, 2015, 21, 17344-17354.	1.7	28
443	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28
444	Wool Carpet Dye Adsorption on Nanoporous Carbon Materials Derived from Agro-Product. Journal of Carbon Research, 2017, 3, 12.	1.4	28
445	Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Science and Technology of Advanced Materials, 2022, 23, 413-423.	2.8	28
446	Designing Lower Critical Solution Temperature Behavior into a Discotic Small Molecule. Journal of Physical Chemistry Letters, 2010, 1, 1336-1340.	2.1	27
447	Thermal Conversion of Hollow Prussian Blue Nanoparticles into Nanoporous Iron Oxides with Crystallized Hematite Phase. European Journal of Inorganic Chemistry, 2014, 2014, 1137-1141.	1.0	27
448	Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. ACS Applied Materials & Description (2016), 8, 24295-24299.	4.0	27
449	Spongelike Porous Silica Nanosheets: From "Soft―Molecular Trapping to DNA Delivery. ACS Applied Materials & DNA Delivery. ACS Applied Materia	4.0	27
450	Coordination Polymer Nanoglue: Robust Adhesion Based on Collective Lamellar Stacking of Nanoplates. ACS Nano, 2017, 11, 3662-3670.	7.3	27

#	Article	IF	CITATIONS
451	Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. Bulletin of the Chemical Society of Japan, 2018, 91, 391-397.	2.0	27
452	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag–FNRs) as an effective single particle freestanding SERS substrate. Physical Chemistry Chemical Physics, 2018, 20, 18873-18878.	1.3	27
453	Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale, 2022, 14, 10610-10629.	2.8	27
454	Title is missing!. Angewandte Chemie, 2002, 114, 3564-3567.	1.6	26
455	Selective formation 2,6-diisopropyl naphthalene over mesoporous Al-MCM-48 catalysts. Journal of Molecular Catalysis A, 2005, 237, 238-245.	4.8	26
456	Novel Hexagonally Ordered Nitrogen-doped Mesoporous Carbon from SBA-15/Polyaniline Nanocomposite. Chemistry Letters, 2007, 36, 770-771.	0.7	26
457	Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous and Mesoporous Materials, 2009, 121, 18-25.	2.2	26
458	Intrinsic parameters for structural variation of reverse micelles in nonionic surfactant (glycerol) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 46
459	Polyethylenes bearing a terminal porphyrin group. Chemical Communications, 2011, 47, 7057.	2.2	26
460	Supramolecular Approaches for Drug Development. Current Medicinal Chemistry, 2012, 19, 2388-2398.	1.2	26
461	Novel block copolymer templates for tuning mesopore connectivity in cage-type mesoporous silica films. Journal of Materials Chemistry, 2012, 22, 20008.	6.7	26
462	Colorimetric visualization of acid–base equilibria in non-polar solvent. Chemical Communications, 2013, 49, 6870.	2.2	26
463	Mesoporous architectures with highly crystallized frameworks. Journal of Materials Chemistry A, 2014, 2, 12096-12103.	5.2	26
464	Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015, 7, e184-e184.	3.8	26
465	Nanoarchitectonics of Nanoporous Carbon Materials from Natural Resource for Supercapacitor Application. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 48-56.	1.9	26
466	Porphyrinoid rotaxanes: building a mechanical picket fence. Chemical Science, 2017, 8, 6679-6685.	3.7	26
467	Porous glass plate immobilized with the adsorbed monolayer of dialkylsilane amphiphiles. Permeation control by a phase transition of the adsorbed monolayer. Langmuir, 1986, 2, 538-540.	1.6	25
468	Strategies for phosphodiester complexation and cleavage. Supramolecular Chemistry, 1993, 1, 201-208.	1.5	25

#	Article	IF	CITATIONS
469	Multilayer Adsorption and Molecular Organization of Rigid Cylindrical Glycoconjugate Poly(phenylisocyanide) on Hydrophilic Surfaces. Macromolecules, 2000, 33, 2772-2775.	2.2	25
470	Catching a molecule at the air-water interface: Dynamic pore array for molecular recognition. Journal of Porous Materials, 2006, 13, 427-430.	1.3	25
471	A Novel Bis(zinc–porphyrin)–Oxoporphyrinogen Donor–Acceptor Triad: Synthesis, Electrochemical, Computational and Photochemical Studies. European Journal of Organic Chemistry, 2006, 2006, 595-603.	1.2	25
472	Lipophilic Tail Architecture and Molecular Structure of Neutralizing Agent for the Controlled Rheology of Viscoelastic Fluid in Amino Acid-Based Anionic Surfactant System. Langmuir, 2011, 27, 2229-2236.	1.6	25
473	Thermally Induced Intraâ€Carboxyl Proton Shuttle in a Molecular Rackâ€andâ€Pinion Cascade Achieving Macroscopic Crystal Deformation. Angewandte Chemie - International Edition, 2016, 55, 14628-14632.	7.2	25
474	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates. Chemistry - A European Journal, 2016, 22, 1301-1312.	1.7	25
475	Electrochemical Supercapacitance Properties of Reduced Graphene Oxide/Mn2O3:Co3O4 Nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 576-585.	1.9	25
476	Dynamic nanoarchitectonics: Supramolecular polymorphism and differentiation, shape-shifter and hand-operating nanotechnology. Current Opinion in Colloid and Interface Science, 2018, 35, 68-80.	3.4	25
477	Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat, 2020, 6, 870-880.	1.5	25
478	Washnut Seed-Derived Ultrahigh Surface Area Nanoporous Carbons as High Rate Performance Electrode Material for Supercapacitors. Bulletin of the Chemical Society of Japan, 2021, 94, 565-572.	2.0	25
479	Electrochemical properties of covalently bonded silane amphiphile monolayers on a tin dioxide electrode. Langmuir, 1990, 6, 1148-1153.	1.6	24
480	Phase Behavior and Microstructures of Nonionic Fluorocarbon Surfactant in Aqueous Systems. Journal of Physical Chemistry B, 2008, 112, 10520-10527.	1.2	24
481	Chemically Programmed Ultrahigh Density Two-Dimensional Semiconductor Superlattice Array. Journal of the American Chemical Society, 2010, 132, 1212-1213.	6.6	24
482	Large-scale synthesis of WOx–EDA nanobelts and their application as photoswitches. CrystEngComm, 2011, 13, 2237.	1.3	24
483	Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface. Nanoscale Research Letters, 2011, 6, 304.	3.1	24
484	Electrochemical Coupling Layer-by-layer (ECC-LbL) Assembly in Patterning Mode. Chemistry Letters, 2012, 41, 383-385.	0.7	24
485	A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines. Chemical Communications, 2012, 48, 9029.	2.2	24
486	Highly Ordered Nanoporous Carbon Films with Tunable Pore Diameters and their Excellent Sensing Properties. Chemistry - A European Journal, 2015, 21, 697-703.	1.7	24

#	Article	IF	Citations
487	Simple Fabrication of Titanium Dioxide/N-Doped Carbon Hybrid Material as Non-Precious Metal Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18782-18789.	4.0	24
488	High surface area nanoporous carbon derived from high quality jute from Bangladesh. Materials Chemistry and Physics, 2018, 216, 491-495.	2.0	24
489	Emission Control by Molecular Manipulation of Doubleâ€Paddled Binuclear Pt ^{II} Complexes at the Airâ€Water Interface. Chemistry - an Asian Journal, 2020, 15, 406-414.	1.7	24
490	2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, 6461-6472.	1.7	24
491	Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex. Bulletin of the Chemical Society of Japan, 2021, 94, 648-654.	2.0	24
492	Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nature Communications, 2022, 13, .	5.8	24
493	Short haired wormlike micelles in mixed nonionic fluorocarbon surfactants. Journal of Colloid and Interface Science, 2007, 314, 223-229.	5.0	23
494	Supramolecular chemistry in two dimensions: selfâ€assembly and dynamic function. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1249-1257.	0.8	23
495	Large scale assembly of ordered donor–acceptor heterojunction molecular wires using the Langmuir–Blodgett technique. Chemical Communications, 2011, 47, 6825.	2.2	23
496	Self-assembled pyrazinacene nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 4868.	1.3	23
497	Hydrogen-bond-driven †homogeneous intercalation' for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 2013, 49, 3631.	2.2	23
498	Mesoporous BN and BCN nanocages with high surface area and spherical morphology. Physical Chemistry Chemical Physics, 2014, 16, 23554-23557.	1.3	23
499	Mechano-Nanoarchitectonics for Bio-Functions at Interfaces. Analytical Sciences, 2016, 32, 1141-1149.	0.8	23
500	Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Scientific Reports, 2016, 6, 19801.	1.6	23
501	A Nanoporous Cytochrome <i>c</i> Film with Highly Ordered Porous Structure for Sensing of Toxic Vapors. Advanced Materials, 2017, 29, 1702295.	11.1	23
502	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	4.6	23
503	Mechanoâ€Nanoarchitectonics: Design and Function. Small Methods, 2022, 6, e2101577.	4.6	23
504	Sensitive Detection of Saccharides by an Amphiphilic Phenylboronic Acid at the Air-Water Interface in the Presence of Quaternized Amines. Chemistry Letters, 1993, 22, 1413-1416.	0.7	22

#	Article	IF	CITATIONS
505	A QCM Study on Adsorption of Macrocyclic Sugar-Cluster to Variously-Functionalized Monolayers. Chemistry Letters, 1998, 27, 1007-1008.	0.7	22
506	Chemically Nonequivalent Sites in Mesoporous BCN Revealed by Solid-state NMR at 21.8 T. Chemistry Letters, 2006, 35, 986-987.	0.7	22
507	Direct Synthesis and the Morphological Control of Highly Ordered Two-Dimensional <i>P</i> 6 <i>mm</i> Mesoporous Niobium Silicates with High Niobium Content. Journal of Physical Chemistry C, 2008, 112, 10130-10140.	1.5	22
508	Reverse micelle microstructural transformations induced by oil and water. Soft Matter, 2011, 7, 10017.	1.2	22
509	Soft Capsules, Hard Capsules, and Hybrid Capsules. Soft Materials, 2012, 10, 387-412.	0.8	22
510	Antioxidant-substituted tetrapyrazinoporphyrazine as a fluorescent sensor for basic anions. Chemical Communications, 2012, 48, 3951.	2.2	22
511	A Singleâ€Step Synthesis of Electroactive Mesoporous ProDOTâ€Silica Structures. Angewandte Chemie - International Edition, 2015, 54, 8407-8410.	7.2	22
512	From Nanotechnology to Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 177-178.	1.9	22
513	Junctionâ€Controlled Topological Polymerization. Angewandte Chemie - International Edition, 2018, 57, 4936-4939.	7.2	22
514	Fullerene Nanoarchitectonics with Shape-Shifting. Materials, 2020, 13, 2280.	1.3	22
515	Hydrogen Bonds and Molecular Orientations of Supramolecular Structure between Barbituric Acid and Melamine Derivative at the Air/Water Interface Revealed by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 2422-2429.	2.1	22
516	Nanoarchitectonics on living cells. RSC Advances, 2021, 11, 18898-18914.	1.7	22
517	Development of MOF Reinforcement for Structural Stability and Toughness Enhancement of Biodegradable Bioinks. Biomacromolecules, 2021, 22, 1053-1064.	2.6	22
518	Functional capsule membranes. 27. A new type of phase-transfer catalysts (PTC). Reaction of substrates in the inner organic phase with the outer aqueous anions catalyzed by PTC grafted on the capsule membrane. Journal of Organic Chemistry, 1986, 51, 5064-5068.	1.7	21
519	Evaluation of a horizontal lifting method of Langmuir-Blodgett films using a quartz-crystal microbalance. Thin Solid Films, 1992, 210-211, 702-706.	0.8	21
520	Interaction of Lipid Monolayers with Aqueous Neutral Polymers and the Consequent Monolayer Stabilization and Improved Langmuir-Blodgett Transfer. Journal of Colloid and Interface Science, 1995, 170, 440-448.	5.0	21
521	Multi-Site Binding of Aqueous Dipeptides by Mixed Monolayers at the Air-Water Interface. Chemistry Letters, 1996, 25, 73-74.	0.7	21
522	Supramolecular Materials from Inorganic Building Blocks. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 1-9.	1.9	21

#	Article	IF	CITATIONS
523	Electrochemical Synthesis of Transparent, Amorphous, C ₆₀ â€Rich, Photoactive, and Lowâ€Doped Film with an Interconnected Structure. Small, 2013, 9, 2064-2068.	5.2	21
524	In situ 2D-extraction of DNA wheels by 3D through-solution transport. Physical Chemistry Chemical Physics, 2015, 17, 32122-32125.	1.3	21
525	Highly active and reusable hydrotalcite-supported Pd(0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron, 2018, 74, 948-954.	1.0	21
526	Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials, 2021, 11, 2146.	1.9	21
527	High-Performance Supercapacitor Materials Based on Hierarchically Porous Carbons Derived from <i>Artocarpus heterophyllus</i> Seed. ACS Applied Energy Materials, 2021, 4, 12257-12266.	2.5	21
528	High-Quality LB Films of Artificial Dialkyl Lipid. Japanese Journal of Applied Physics, 1987, 26, L1897-L1899.	0.8	20
529	Association of amphiphilic cyclodextrins with dipalmitoylphosphatidylcholine in mixed insoluble monolayers at the air-water interface. Journal of Colloid and Interface Science, 1989, 131, 561-566.	5.0	20
530	Swelling behaviour and stability of Langmuir-Blodgett films deposited on a quartz crystal microbalance in a water phase. Thin Solid Films, 1989, 178, 465-471.	0.8	20
531	Aqueous Phase Behavior of Diglycerol Fatty Acid Esters. Journal of Dispersion Science and Technology, 2007, 28, 883-891.	1.3	20
532	Fine-tuning supramolecular assemblies of fullerenes bearing long alkyl chains. Thin Solid Films, 2008, 516, 2401-2406.	0.8	20
533	Room Temperature Exciton Formation in SnO ₂ Nanocrystals in SiO ₂ :Eu Matrix: Quantum Dot System, Heat-Treatment Effect. Journal of Nanoscience and Nanotechnology, 2009, 9, 2634-2638.	0.9	20
534	Synthesis of New Red-Emitting Single-Phase Europium Oxycarbonate. Inorganic Chemistry, 2009, 48, 5569-5573.	1.9	20
535	Nonionic reverse micelle formulation and their microstructure transformations in an aromatic solvent ethylbenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 140-150.	2.3	20
536	Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α. International Journal of Nanomedicine, 2012, 7, 3625.	3.3	20
537	Alkyl Imidazolium Ionic-Liquid-Mediated Formation of Gold Particle Superstructures. Langmuir, 2013, 29, 7186-7194.	1.6	20
538	Gene transfer on inorganic/organic hybrid silica nanosheets. Physical Chemistry Chemical Physics, 2015, 17, 25455-25462.	1.3	20
539	Multimodal switching of a redox-active macrocycle. Nature Communications, 2019, 10, 1007.	5.8	20
540	Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules, 2021, 26, 1621.	1.7	20

#	Article	IF	CITATIONS
541	Nanoarchitectonics for fullerene biology. Applied Materials Today, 2021, 23, 100989.	2.3	20
542	Functional capsule membranes. Part 31. Polymerizable lipid-corked capsule membranes. Polymerization at different positions of corking lipid bilayers on the capsule and effect of polymerization on permeation behavior. Journal of the American Chemical Society, 1988, 110, 2495-2500.	6.6	19
543	QCM analyses on adsorption of gaseous guests to cast films of porphyrin-resorcinol derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 177-186.	2.3	19
544	ortho-Selective ethylation of phenol with ethanol catalyzed by bimetallic mesoporous catalyst, CoAl-MCM-41. Journal of Molecular Catalysis A, 2005, 230, 151-157.	4.8	19
545	Immobilization of Lysozyme onto Pore-engineered Mesoporous AlSBA-15. Journal of Nanoscience and Nanotechnology, 2006, 6, 1765-1771.	0.9	19
546	Phase Behavior of Diglycerol Monomyristate in Different Nonpolar Organic Solvent Systems. Journal of Dispersion Science and Technology, 2007, 28, 1236-1241.	1.3	19
547	Tautomerism in Novel Oxocorrologens. Chemistry - A European Journal, 2007, 13, 9824-9833.	1.7	19
548	Decomposition of Dinuclear Manganese Complexes for the Preparation of Nanostructured Oxide Materials. Inorganic Chemistry, 2008, 47, 8306-8314.	1.9	19
549	Manipulation of thin film assemblies: Recent progress and novel concepts. Current Opinion in Colloid and Interface Science, 2011, 16, 459-469.	3.4	19
550	Self-Assembled Fullerene Nanostructures. Journal of Oleo Science, 2013, 62, 541-553.	0.6	19
551	New synthesis of unsymmetrically-substituted 2,5-diarylpyrroles from homopropargyl sulfonamides. RSC Advances, 2014, 4, 4897.	1.7	19
552	Media-dependent morphology of supramolecular aggregates of \hat{l}^2 -cyclodextrin-grafted chitosan and insulin through multivalent interactions. Journal of Materials Chemistry B, 2014, 2, 1802.	2.9	19
553	Synthesis and characterizations of nanoporous carbon derived from Lapsi (Choerospondias axillaris) seed: Effect of carbonization conditions. Advanced Powder Technology, 2015, 26, 894-900.	2.0	19
554	Fullerphene Nanosheets: A Bottomâ€Up 2D Material for Singleâ€Carbonâ€Atomâ€Level Molecular Discrimination. Advanced Materials Interfaces, 2022, 9, .	1.9	19
555	Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. Journal of the American Chemical Society, 2022, 144, 10830-10843.	6.6	19
556	Dynamic Analyses on Induced-Fit Gaseous Guest Binding to Organic Crystals with a Quartz-Crystal Microbalance. Chemistry - A European Journal, 2000, 6, 1750-1756.	1.7	18
557	Preparation of Novel Mesoporous Carbon Materials with Tunable Pore Diameters Using Directly Synthesized AlSBA-15 Materials. Chemistry Letters, 2005, 34, 674-675.	0.7	18
558	Adsorption of amino acid on mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, , 631-636.	1.5	18

#	Article	IF	CITATIONS
559	Emerging pressure-release materials for drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 1465-1469.	2.4	18
560	Development of Nanoporous Structure in Carbons by Chemical Activation with Zinc Chloride. Journal of Nanoscience and Nanotechnology, 2013, 13, 2613-2623.	0.9	18
561	Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal–ligand coordination to form a donor–acceptor hybrid for ultrafast charge separation and charge stabilization. Dalton Transactions, 2015, 44, 359-367.	1.6	18
562	Dependence of Intestinal Absorption Profile of Insulin on Carrier Morphology Composed of \hat{l}^2 -Cyclodextrin-Grafted Chitosan. Molecular Pharmaceutics, 2016, 13, 4034-4042.	2.3	18
563	Mechanical Tuning of Throughâ€Molecule Conductance in a Conjugated Calix[4]pyrrole. ChemistrySelect, 2018, 3, 6473-6478.	0.7	18
564	Supramolecular nanoarchitectonics for functional materials. APL Materials, 2019, 7, .	2.2	18
565	Unidirectional Branching Growth of Dipeptide Single Crystals for Remote Light Multiplication and Collection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31-36.	4.0	18
566	Atomic and Organic Nanoarchitectonics. Trends in Chemistry, 2020, 2, 779-782.	4.4	18
567	Nanoporous Carbon Materials Derived from Washnut Seed with Enhanced Supercapacitance. Materials, 2020, 13, 2371.	1.3	18
568	Remarkable Microenvironmental Difference between Monolayer and Bilayer Membrane Interfaces. Dissociation Behavior of a Lysine Residue Placed on the Membrane Surface. Chemistry Letters, 2000, 29, 82-83.	0.7	17
569	Preparation and pore size control of cage type mesoporous carbon materials and their application in protein adsorption. Studies in Surface Science and Catalysis, 2005, , 971-978.	1.5	17
570	Growth and electrical properties of N,N′-bis(n-pentyl)terrylene- 3,4:11,12-tetracarboximide thin films. Applied Physics Letters, 2008, 92, 163301.	1.5	17
571	Dopant Induced Bandgap Narrowing in Y-Doped Zinc Oxide Nanostructures. Journal of Nanoscience and Nanotechnology, 2012, 12, 75-83.	0.9	17
572	Surface Oxidized Carbon Nanotubes Uniformly Coated with Nickel Ferrite Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 1301-1308.	1.9	17
573	Carbon Nanosheets by Morphologyâ€Retained Carbonization of Twoâ€Dimensional Assembled Anisotropic Carbon Nanorings. Angewandte Chemie, 2018, 130, 9827-9831.	1.6	17
574	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
575	Nanoarchitectonics for Nanocarbon Assembly and Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 42-55.	1.9	17
576	The lipid composition affects Trastuzumab adsorption at monolayers at the air-water interface. Chemistry and Physics of Lipids, 2020, 227, 104875.	1.5	17

#	Article	IF	Citations
577	Monitoring the Release of Silver from a Supramolecular Fullerene C60-AgNO3 Nanomaterial. Bulletin of the Chemical Society of Japan, 2021, 94, 1347-1354.	2.0	17
578	Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules, 2021, 26, 4636.	1.7	17
579	Luminescence Properties of SnO ₂ Nanoparticles Dispersed in Eu ³⁺ Doped SiO ₂ Matrix. Journal of Nanoscience and Nanotechnology, 2008, 8, 1489-1493.	0.9	17
580	"PROTEOSILICA" A NOVEL NANOCOMPOSITE WITH PEPTIDE ASSEMBLIES IN SILICA NANOSPACE: PHOTOISOMERIZATION OF SPIROPYRAN DOPED IN CHIRAL ENVIRONMENT. International Journal of Nanoscience, 2002, 01, 521-525.	0.4	16
581	Spider-Web Amphiphiles as Artificial Lipid Clusters:Â Design, Synthesis, and Accommodation of Lipid Components at the Airâ^'Water Interface. Langmuir, 2004, 20, 6762-6769.	1.6	16
582	Carboxyl Group Functionalization of Mesoporous Carbon Nanocage through Reaction with Ammonium Persulfate. Journal of Nanoscience and Nanotechnology, 2007, 7, 3250-3256.	0.9	16
583	Fullerene nanowires on graphite: Epitaxial self-organizations of a fullerene bearing double long-aliphatic chains. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 99-105.	2.3	16
584	An Investigation on Co-Precipitation Derived ZnO Nanospheres. Journal of Nanoscience and Nanotechnology, 2009, 9, 5966-5972.	0.9	16
585	Chiral amide from (1S,2R)-(+)-norephedrine alkaloid in the enantioselective addition of diethylzinc to aryl and heteroaryl aldehydes. Tetrahedron: Asymmetry, 2009, 20, 1731-1735.	1.8	16
586	Synthesis of mesoporous antimony-doped tin oxide (ATO) thin films and investigation of their electrical conductivity. CrystEngComm, 2013, 15, 4404.	1.3	16
587	Low-temperature synthesis of copper oxide (CuO) nanostructures with temperature-controlled morphological variations. Ceramics International, 2015, 41, 9426-9432.	2.3	16
588	Symmetric Raman Tensor Contributes to Chiral Vibrational Sum-Frequency Generation from Binaphthyl Amphiphile Monolayers on Water: Study of Electronic Resonance Amplitude and Phase Profiles. Journal of Physical Chemistry C, 2017, 121, 11241-11250.	1.5	16
589	Gold Nanoparticle Chains: Synthesis, Characterization, and Modeling Using Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2018, 122, 11973-11984.	1.5	16
590	Optogenetic Modulation and Reprogramming of Bacteriorhodopsinâ€Transfected Human Fibroblasts on Selfâ€Assembled Fullerene C60 Nanosheets. Advanced Biology, 2019, 3, e1800254.	3.0	16
591	Biomoleculeâ€Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption. Chemistry - A European Journal, 2019, 25, 4843-4855.	1.7	16
592	Helicity Manipulation of a Double-Paddled Binaphthyl in a Two-Dimensional Matrix Field at the Air–Water Interface. ACS Nano, 2020, 14, 13294-13303.	7.3	16
593	Nanoarchitectonics of Lotus Seed Derived Nanoporous Carbon Materials for Supercapacitor Applications. Materials, 2020, 13, 5434.	1.3	16
594	Nanoarchitektonik als ein Ansatz zur Erzeugung bioÄ ¤ nlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	1.6	16

#	Article	IF	CITATIONS
595	Solvothermally synthesized anatase TiO2 nanoparticles for photoanodes in dye-sensitized solar cells. Science and Technology of Advanced Materials, 2021, 22, 100-112.	2.8	16
596	Redox-sensitive permeation from a capsule membrane grafted with viologen-containing polymers. Journal of the Chemical Society Chemical Communications, 1986, , 73.	2.0	15
597	Reinforcing effect of polyterpenoids on polyprenyl phosphate monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 103, 183-194.	2.3	15
598	Structural Study of the Thermally Induced and Photoinduced Phase Transitions of the 1,3,5-Trithia-2,4,6-triazapentalenyl (TTTA) Radical. Journal of Physical Chemistry A, 2007, 111, 6449-6455.	1.1	15
599	Self-Assembly of Optical Molecules with Supramolecular Concepts. International Journal of Molecular Sciences, 2009, 10, 1950-1966.	1.8	15
600	Tautomerism in Reduced Pyrazinacenes. Journal of Chemical Theory and Computation, 2010, 6, 517-525.	2.3	15
601	Multinuclear solid-state NMR spectroscopy of a paramagnetic layered double hydroxide. RSC Advances, 2013, 3, 19857.	1.7	15
602	Arylpyrrole oligomers as tunable anion receptors. Organic and Biomolecular Chemistry, 2014, 12, 5492-5499.	1.5	15
603	Conformational interchange of a carbohydrate by mechanical compression at the air–water interface. Physical Chemistry Chemical Physics, 2014, 16, 10286.	1.3	15
604	Manipulation of Shell Morphology of Silicate Spheres from Structural Evolution in a Purely Inorganic System. Chemistry - an Asian Journal, 2015, 10, 1379-1386.	1.7	15
605	Tailoring the surface-oxygen defects of a tin dioxide support towards an enhanced electrocatalytic performance of platinum nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 5932-5937.	1.3	15
606	pH-Responsive Saloplastics Based on Weak Polyelectrolytes: From Molecular Processes to Material Scale Properties. Macromolecules, 2018, 51, 4424-4434.	2.2	15
607	Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Current Opinion in Colloid and Interface Science, 2019, 44, 1-13.	3.4	15
608	Microwires of Au–Ag Nanocages Patterned via Magnetic Nanoadhesives for Investigating Proteins using Surface Enhanced Infrared Absorption Spectroscopy. ACS Applied Materials & Diterfaces, 2019, 11, 18053-18061.	4.0	15
609	Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports. Journal of Materials Chemistry A, 2020, 8, 17713-17724.	5.2	15
610	Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395.	1.9	15
611	Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. View, 2022, 3, 20200078.	2.7	15
612	Robust, Transparent Hybrid Thin Films of Phase-Change Material Sb ₂ S ₃ Prepared by Electrophoretic Deposition. ACS Applied Energy Materials, 2021, 4, 9891-9901.	2.5	15

#	Article	IF	CITATIONS
613	Syntheses and monolayer properties of vitamin B12 derivatives with seven alkyl chains. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 47-58.	2.3	14
614	Two-dimensional 11B–11B exchange NMR study in mesoporous boron carbon nitride at 21.8T. Solid State Nuclear Magnetic Resonance, 2007, 31, 193-196.	1.5	14
615	Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content. Microporous and Mesoporous Materials, 2008, 110, 422-430.	2.2	14
616	Luminescence Properties of SnO ₂ Nanoparticles Dispersed in Eu ³⁺ Doped SiO ₂ Matrix. Journal of Nanoscience and Nanotechnology, 2008, 8, 1489-1493.	0.9	14
617	Structural Investigation of Diglycerol Polyisostearate Reverse Micelles in Organic Solvents. Journal of Physical Chemistry B, 2009, 113, 12669-12679.	1.2	14
618	Effect of anion binding on charge stabilization in a bis-fullerene–oxoporphyrinogen conjugate. Chemical Communications, 2010, 46, 7933.	2.2	14
619	The initiation mechanisms for surface hydrosilylation with 1-alkenes. Physical Chemistry Chemical Physics, 2011, 13, 4862.	1.3	14
620	Controlling Porphyrin Nanoarchitectures at Solid Interfaces. Langmuir, 2013, 29, 7291-7299.	1.6	14
621	Light-Harvesting Nanorods Based on Pheophorbide-Appending Cellulose. Biomacromolecules, 2013, 14, 3223-3230.	2.6	14
622	Demonstration of Solvent-Induced One-Dimensional Nonionic Reverse Micelle Growth. Journal of Physical Chemistry Letters, 2013, 4, 2585-2590.	2.1	14
623	Hard-templating Synthesis of Mesoporous Pt-Based Alloy Particles with Low Ni and Co Contents. Chemistry Letters, 2013, 42, 447-449.	0.7	14
624	Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli. Thin Solid Films, 2014, 554, 32-40.	0.8	14
625	Fabrication of both the photoactive layer and the electrode by electrochemical assembly: towards a fully solution-processable device. Chemical Communications, 2014, 50, 10448-10451.	2.2	14
626	Acid/Base Switching of the Tautomerism and Conformation of a Dioxoporphyrin for Integrated Binary Subtraction. Chemistry - A European Journal, 2014, 20, 12910-12916.	1.7	14
627	Controlled Crystallization of Cyanoâ€Bridged Cu–Pt Coordination Polymers with Twoâ€Dimensional Morphology. Chemistry - an Asian Journal, 2014, 9, 1511-1514.	1.7	14
628	Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone. Journal of Nanoscience and Nanotechnology, 2015, 15, 1465-1472.	0.9	14
629	Chelate stabilized metal oxides for visible light photocatalyzed water oxidations. Green Chemistry, 2015, 17, 982-990.	4.6	14
630	Nanostructured polymeric yolk–shell capsules: a versatile tool for hierarchical nanocatalyst design. Journal of Materials Chemistry A, 2016, 4, 9850-9857.	5 . 2	14

#	Article	IF	Citations
631	Determination of blood potassium using a fouling-resistant PVDF–HFP-based optode. RSC Advances, 2016, 6, 14261-14265.	1.7	14
632	Absorption and Fluorescence Features of an Amphiphilic <i>meso</i> -Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2017, 121, 8614-8624.	1.1	14
633	Structural Modulation of Chromic Response: Effects of Bindingâ€Site Blocking in a Conjugated Calix[4]pyrrole Chromophore. ChemistryOpen, 2018, 7, 323-335.	0.9	14
634	Enhanced Activity of Alcohol Dehydrogenase in Porous Silica Nanosheets with Wide Size Distributed Mesopores. Bulletin of the Chemical Society of Japan, 2019, 92, 275-282.	2.0	14
635	Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. Journal of Carbon Research, 2020, 6, 73.	1.4	14
636	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
637	Nanoarchitectonics: bottom-up creation of functional materials and systems. Beilstein Journal of Nanotechnology, 2020, 11, 450-452.	1.5	14
638	Langmuir–Blodgett Nanoarchitectonics, Out of the Box. Accounts of Materials Research, 2022, 3, 404-410.	5.9	14
639	Hyper 100 °C Langmuir–Blodgett (Langmuir–Schaefer) Technique for Organized Ultrathin Film of Polymeric Semiconductors. Langmuir, 2022, 38, 5237-5247.	1.6	14
640	Nanoarchitectonics horizons: materials for life sciences. Nanoscale, 2022, 14, 10630-10647.	2.8	14
641	Novel class of organic-inorganic hybrid vesicle "Cerasome―derived from various amphiphiles with alkoxysilyl head. Studies in Surface Science and Catalysis, 2001, , 599-602.	1.5	13
642	Supramolecular Shape Shifter: Polymorphs of Self-Organized Fullerene Assemblies. Journal of Nanoscience and Nanotechnology, 2009, 9, 550-556.	0.9	13
643	Structure and rheology of reverse micelles in dipentaerythrityl tri-(12-hydroxystearate)/oil systems. Physical Chemistry Chemical Physics, 2011, 13, 4911.	1.3	13
644	Synthesis and metallic probe induced conductance of Au tipped ultranarrow PbS rods. Chemical Communications, 2011, 47, 8421.	2.2	13
645	One-touch Nanofabrication of Regular-sized Disks through Interfacial Dewetting and Weak Molecular Interaction. Chemistry Letters, 2012, 41, 170-172.	0.7	13
646	Selfâ€Construction from 2D to 3D: Oneâ€Pot Layerâ€by‣ayer Assembly of Graphene Oxide Sheets Held Together by Coordination Polymers. Angewandte Chemie, 2016, 128, 8566-8570.	1.6	13
647	Amphiprotism-Coupled Near-Infrared Emission in Extended Pyrazinacenes Containing Seven Linearly Fused Pyrazine Units. Journal of the American Chemical Society, 2019, 141, 19570-19574.	6.6	13
648	Interfacial nanoarchitectonics for responsive cellular biosystems. Materials Today Bio, 2020, 8, 100075.	2.6	13

#	Article	IF	CITATIONS
649	Nanoarchitectonics at Interfaces for Regulations of Biorelated Phenomena: Small Structures with Big Effects. Small Structures, 2021, 2, 2100006.	6.9	13
650	Electrical evaluation of ultrathin organic films on solid substrates. Thin Solid Films, 1989, 179, 277-282.	0.8	12
651	Lyotropic aggregate of tripeptide derivatives within organic solvents: study on dynamic property of molecular assembling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 271-285.	2.3	12
652	Electrochemistry of fullerene C60 embedded in Langmuir–Blodgett films of artificial lipids on electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 607-612.	2.3	12
653	Three-dimensional Mesoporous TiKIT-6 with <i>la</i> 3 <i>d</i> Symmetry Synthesized at Low Acid Concentration and Its Catalytic Performances. Chemistry Letters, 2008, 37, 1016-1017.	0.7	12
654	Hydrogenâ€Bondâ€Assisted "Gold Cold Fusion―for Fabrication of 2D Web Structures. Chemistry - an Asian Journal, 2009, 4, 1055-1058.	1.7	12
655	Evidence for a ball-shaped cyclen cyclophane: an experimental and first principles study. Physical Chemistry Chemical Physics, 2009, 11, 6038.	1.3	12
656	Structure of Diglycerol Polyisostearate Nonionic Surfactant Micelles in Nonpolar Oil Hexadecane: A SAXS Study. Journal of Oleo Science, 2010, 59, 339-350.	0.6	12
657	Base-Selective Adsorption of Nucleosides to Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of Nanoscience and Nanotechnology, 2011, 11, 3959-3964.	0.9	12
658	Worm-Like Soft Nanostructures in Nonionic Systems: Principles, Properties and Application as Templates. Journal of Nanoscience and Nanotechnology, 2013, 13, 4497-4520.	0.9	12
659	Titania Nanoparticles Stabilized HPA in SBAâ€15 for the Intermolecular Hydroamination of Activated Olefins. ChemCatChem, 2014, 6, 3347-3354.	1.8	12
660	Dynamic Processes in Prochiral Solvating Agents (pro-CSAs) Studied by NMR Spectroscopy. Symmetry, 2014, 6, 345-367.	1.1	12
661	Manipulation of fullerene superstructures by complexing with polycyclic aromatic compounds. Physical Chemistry Chemical Physics, 2017, 19, 29099-29105.	1.3	12
662	Fabrication of Silica-Protein Hierarchical Nanoarchitecture with Gas-Phase Sensing Activity. Journal of Nanoscience and Nanotechnology, 2017, 17, 5908-5917.	0.9	12
663	Structural-Size Control of Domain from Nano to Micro: Logical Balancing between Attractive and Repulsive Interactions in Two Dimensions. Langmuir, 2019, 35, 10383-10389.	1.6	12
664	Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. Dalton Transactions, 2019, 48, 15583-15596.	1.6	12
665	Nanoarchitectonics, now. Molecular Systems Design and Engineering, 2019, 4, 9-10.	1.7	12
666	Molecular Engineering of β‧ubstituted Oxoporphyrinogens for Hydrogenâ€Bond Donor Catalysis. European Journal of Organic Chemistry, 2020, 2020, 82-90.	1.2	12

#	Article	IF	Citations
667	Pyrazinacenes exhibit on-surface oxidation-state-dependent conformational and self-assembly behaviours. Communications Chemistry, 2021, 4, .	2.0	12
668	Hierarchically Porous Carbon from <i>Phoenix dactylifera</i> Seed for High-Performance Supercapacitor Applications. Bulletin of the Chemical Society of Japan, 2022, 95, 1060-1067.	2.0	12
669	Capsule membrane-supported phase-transfer catalysts. Journal of the Chemical Society Chemical Communications, 1985, , 920.	2.0	11
670	Flaking of Langmuir-Blodgett films at the air-water interface. Langmuir, 1989, 5, 1261-1262.	1.6	11
671	Information conversion on molecular assemblies containing steroid cyclophanes. Thin Solid Films, 2001, 393, 291-297.	0.8	11
672	Adsorption of lysozyme over mesoporous carbons with various pore diameters. Studies in Surface Science and Catalysis, 2005, , 637-642.	1.5	11
673	New aspects of porphyrins and related compounds: self-assembled structures in two-dimensional molecular arrays. Journal of Porphyrins and Phthalocyanines, 2009, 13, 22-34.	0.4	11
674	Electric Double-Layer Capacitance of Carbon Nanocages. Journal of Nanoscience and Nanotechnology, 2009, 9, 391-395.	0.9	11
675	Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. Synthetic Metals, 2009, 159, 765-768.	2.1	11
676	Probing the Micro-Phase Separation of Thermo-Responsive Amphiphilic Polymer in Water/Ethanol Solution. Journal of Nanoscience and Nanotechnology, 2010, 10, 8408-8416.	0.9	11
677	Anchoring of self-assembled monolayers of unsymmetrically-substituted chromophores with an oxoporphyrinogen surface clamp. Chemical Communications, 2011, 47, 8533.	2.2	11
678	Reverse Micelle Microstructural Transformations Induced by Surfactant Molecular Structure, Concentration, and Temperature. Journal of Nanoscience and Nanotechnology, 2011, 11, 7665-7675.	0.9	11
679	Dynamic supramolecular systems at interfaces. Supramolecular Chemistry, 2011, 23, 183-194.	1.5	11
680	Mesoporous Carbons Functionalized with Aromatic, Aliphatic, and Cyclic Amines, and their Superior Catalytic Activity. ChemCatChem, 2014, 6, 2872-2880.	1.8	11
681	Facile Synthesis of Tellurium Nanowires and Study of Their Third-Order Nonlinear Optical Properties. Journal of the Brazilian Chemical Society, 2016, , .	0.6	11
682	Visible light promoted photocatalytic water oxidation: proton and electron collection via a reversible redox dye mediator. Catalysis Science and Technology, 2016, 6, 3718-3722.	2.1	11
683	Fluorescent mesomorphic pyrazinacenes. Journal of Materials Chemistry C, 2016, 4, 11514-11523.	2.7	11
684	Hydrous ferric oxide nanoparticles hosted porous polyethersulfone adsorptive membrane: chromium (VI) adsorptive studies and its applicability for water/wastewater treatment. Environmental Science and Pollution Research, 2019, 26, 20386-20399.	2.7	11

#	Article	IF	CITATIONS
685	Bioactive supra decorated thiazolidine-4-carboxylic acid derivatives attenuate cellular oxidative stress by enhancing catalase activity. Physical Chemistry Chemical Physics, 2020, 22, 7942-7951.	1.3	11
686	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032.	3.2	11
687	Revisiting properties of edge-bridged bromide tantalum clusters in the solid-state, in solution and vice versa: an intertwined experimental and modelling approach. Dalton Transactions, 2021, 50, 8002-8016.	1.6	11
688	Switching the solubility of electroactive ionic liquids for designing high energy supercapacitor and low potential biosensor. Journal of Colloid and Interface Science, 2021, 588, 221-231.	5.0	11
689	Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181.	6.2	11
690	Fullerene Rosette: Two-Dimensional Interactive Nanoarchitectonics and Selective Vapor Sensing. International Journal of Molecular Sciences, 2022, 23, 5454.	1.8	11
691	"Heptopusâ€, a Novel Class of Amphiphiles with Seven Alkyl Chains. Synthesis and Monolayer Property. Langmuir, 1999, 15, 1791-1795.	1.6	10
692	Molecular Recognition by Cyclophane/Guanidinium Supramolecular Receptor Embedded at the Air-Water Interface. Supramolecular Chemistry, 2003, 15, 87-94.	1.5	10
693	High-density modification of mesoporous silica inner walls with amino acid function by residue transfer from template. Studies in Surface Science and Catalysis, 2003, , 465-468.	1.5	10
694	Size-Selective Organization of Silica and Silica-Like Particles on Solid Interfaces through Layer-by-Layer Assembly. Journal of Sol-Gel Science and Technology, 2004, 31, 59-62.	1.1	10
695	Pyren-1-ylmethyl N-substituted oxoporphyrinogens. Journal of Porphyrins and Phthalocyanines, 2007, 11, 390-396.	0.4	10
696	Structural and Optical Characterization of Samarium Doped Yttrium Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 6747-6752.	0.9	10
697	Studies on Langmuir monolayers of polyprenyl phosphates towards a possible scenario for origin of life. Colloids and Surfaces B: Biointerfaces, 2009, 74, 426-435.	2.5	10
698	Macroporous poly(aromatic amine): Synthesis and film fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 156-161.	2.3	10
699	Carbon Nanocage: Super-Adsorber of Intercalators for DNA Protection. Journal of Nanoscience and Nanotechnology, 2011, 11, 3084-3090.	0.9	10
700	<i>In-Situ</i> Formation of Silver Nanoparticles Using Nonionic Surfactant Reverse Micelles as Nanoreactors. Journal of Nanoscience and Nanotechnology, 2014, 14, 2238-2244.	0.9	10
701	Totally Phospholipidic Mesoporous Particles. Journal of Physical Chemistry C, 2015, 119, 7255-7263.	1.5	10
702	pH-Responsive Cotton Effects in the d–d Transition Band of Self-Assembling Copper(II) Complexes with a Cholesteryl-Armed Ligand. Bulletin of the Chemical Society of Japan, 2017, 90, 739-745.	2.0	10

#	Article	IF	Citations
703	Electro-click construction of hybrid nanocapsule films with triggered delivery properties. Physical Chemistry Chemical Physics, 2018, 20, 2761-2770.	1.3	10
704	NMR Spectroscopic Determination of Enantiomeric Excess Using Small Prochiral Molecules. Journal of Physical Chemistry B, 2018, 122, 5114-5120.	1.2	10
705	Nanomechanical Recognition and Discrimination of Volatile Molecules by Au Nanocages Deposited on Membrane-Type Surface Stress Sensors. ACS Applied Nano Materials, 2020, 3, 4061-4068.	2.4	10
706	Mesoporous Alumina-Titania Composites with Enhanced Molybdenum Adsorption towards Medical Radioisotope Production. Bulletin of the Chemical Society of Japan, 2021, 94, 502-507.	2.0	10
707	Supramolecular Chemistry as a Versatile Tool for Advanced Sciences in Nanospace. Advanced Science Letters, 2008, 1, 28-58.	0.2	10
708	Carbon Nanoarchitectonics for Energy and Related Applications. Journal of Carbon Research, 2021, 7, 73.	1.4	10
709	Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. Bulletin of the Chemical Society of Japan, 2022, 95, 889-897.	2.0	10
710	Measurement of the Detachment of LB Films from a Piezoelectric Quartz Plate at the Air-Water Interface. Journal of Colloid and Interface Science, 1994, 167, 275-280.	5.0	9
711	Proteosilica - mesoporous silicates densely filling amino acid and peptide assemblies in their nanoscale pores. Studies in Surface Science and Catalysis, 2003, , 427-430.	1.5	9
712	Molecular Arrays and Patterns for Supramolecular Materials. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 553-558.	0.1	9
713	Self-Assembled Structures of Diglycerol Monolaurate- and Monomyristate in Olive Oil. Journal of Dispersion Science and Technology, 2009, 30, 1525-1532.	1.3	9
714	Preparation and characterization of highly ordered mesoporous SiC nanoparticles with rod shaped morphology and tunable pore diameters. Journal of Materials Chemistry, 2011, 21, 8792.	6.7	9
715	Tautomers of extended reduced pyrazinacenes: a density-functional-theory based study. Physical Chemistry Chemical Physics, 2011, 13, 2145-2150.	1.3	9
716	Synthesis and Morphological Control of Europium Doped Cadmium Sulphide Nanocrystals. Journal of Nanoscience and Nanotechnology, 2011, 11, 7783-7788.	0.9	9
717	Homeotropic Alignment of Dendritic Columnar Liquid Crystal Induced by Hydrogen-Bonded Triphenylene Core Bearing Fluoroalkyl Chains. Journal of Nanoscience and Nanotechnology, 2014, 14, 5130-5137.	0.9	9
718	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. ChemistrySelect, 2017, 2, 5793-5799.	0.7	9
719	Fluoride-ion-binding promoted photoinduced charge separation in a self-assembled C ₆₀ alkyl cation bound bis-crown ether-oxoporphyrinogen supramolecule. Chemical Communications, 2018, 54, 1351-1354.	2.2	9
720	Supramolecular ultrafast energy and electron transfer in a directly linked BODIPY–oxoporphyrinogen dyad upon fluoride ion binding. Chemical Communications, 2020, 56, 3855-3858.	2.2	9

#	Article	lF	Citations
721	Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. Analytical Sciences, 2021, 37, 1331-1348.	0.8	9
722	Self-Assembled Corn-Husk-Shaped Fullerene Crystals as Excellent Acid Vapor Sensors. Chemosensors, 2022, 10, 16.	1.8	9
723	Biomimetic and Biological Nanoarchitectonics. International Journal of Molecular Sciences, 2022, 23, 3577.	1.8	9
724	Preparation Condition of a Novel Organic-Inorganic Hybrid Vesicle "Cerasome" Kobunshi Ronbunshu, 2000, 57, 251-253.	0.2	8
725	Molecular Recognition by Wall-Assembling-Type Nanocavity in Aqueous Media. Journal of Nanoscience and Nanotechnology, 2002, 2, 41-44.	0.9	8
726	Remarkable Difference of Phase Transition Behaviors Between Langmuir Monolayers and Aqueous Bilayer Vesicles of Oligopeptide-Carrying Lipids. Journal of Nanoscience and Nanotechnology, 2006, 6, 1718-1730.	0.9	8
727	Preparation and Characterization of Chiral Oxazaborolidine Complex Immobilized SBAâ€15 and Its Application in the Asymmetric Reduction of Prochiral Ketones. Chemistry - an Asian Journal, 2010, 5, 897-903.	1.7	8
728	Stable pseudotetrahedral supermolecules based on an oxoporphyrinogen. Tetrahedron Letters, 2010, 51, 2935-2938.	0.7	8
729	Facile Fabrication of Silver Nanoclusters as Promising Surface-Enhanced Raman Scattering Substrates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2245-2251.	0.9	8
730	Fabrication and characterization of branched carbon nanostructures. Beilstein Journal of Nanotechnology, 2016, 7, 1260-1266.	1.5	8
731	Anion binding, electrochemistry and solvatochromism of \hat{l}^2 -brominated oxoporphyrinogens. Dalton Transactions, 2016, 45, 4006-4016.	1.6	8
732	Quinone-Facilitated Coordinated Bipyrene and Polypyrene on Au(111) by Capture of Gold Adatoms. Journal of Physical Chemistry C, 2019, 123, 16281-16287.	1.5	8
733	Vortex-Aligned Ordered Film of Crystalline Fullerene C ₇₀ Microtubes with Enhanced Photoluminescence and Photovoltaics Properties. Journal of Nanoscience and Nanotechnology, 2020, 20, 2971-2978.	0.9	8
734	Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2100436.	1.9	8
735	Band mobility exceeding 10 cm2 Vâ^'1 sâ^'1 assessed by field-effect and chemical double doping in semicrystalline polymeric semiconductors. Applied Physics Letters, 2021, 119, 013302.	1.5	8
736	Enhancement of singlet oxygen generation based on incorporation of oxoporphyrinogen (OxP) into microporous solids. Materials Today Chemistry, 2021, 21, 100534.	1.7	8
737	Evaluation of a Transfer Process for Langmuir-Blodgett Films by Means of a Quartz-Crystal Microbalance. Thin Films, 1995, 20, 317-329.	0.2	8
738	Supramolecular Approaches to Nanotechnology: Switching Properties and Dynamic Functions. Current Organic Chemistry, 2011, 15, 3719-3733.	0.9	8

#	Article	IF	CITATIONS
739	High Surface Area Nanoporous Activated Carbons Materials from Areca catechu Nut with Excellent Iodine and Methylene Blue Adsorption. Journal of Carbon Research, 2022, 8, 2.	1.4	8
740	Formation of Mesoscopic Patterns with Molecular-Level Flatness by Simple Casting of Chloroform Solutions of Tripeptide-Containing Amphiphiles. Chemistry Letters, 1999, 28, 787-788.	0.7	7
741	Bio/Carbon Nanomaterials-The Adsorption of Lysozyme on Mesoporous Carbon Molecular Sieves Kobunshi Ronbunshu, 2004, 61, 623-627.	0.2	7
742	Nanoporous Reactor with Tunable Selectivity on Alkylation of Ethylbenzene. Journal of Nanoscience and Nanotechnology, 2005, 5, 542-549.	0.9	7
743	Novel Microporous Carbon Material with Flower Like Structure Templated by MCM-22. Journal of Nanoscience and Nanotechnology, 2007, 7, 2913-2916.	0.9	7
744	Synthesis of Fructone and Acylal Using Hexagonally Ordered Mesoporous Aluminosilicate Catalyst. Collection of Czechoslovak Chemical Communications, 2008, 73, 1112-1124.	1.0	7
745	Growth Control of Nonionic Reverse Micelles by Surfactant and Solvent Molecular Architecture and Water Addition. Journal of Nanoscience and Nanotechnology, 2011, 11, 4863-4873.	0.9	7
746	Mixing Antisolvents Induced Modulation in the Morphology of Crystalline C60. Journal of Nanoscience and Nanotechnology, 2012, 12, 6380-6384.	0.9	7
747	Immobilization of chiral amide derived from $(1R,2S)$ - (\hat{a}°) -norephedrine over 3D nanoporous silica for the enantioselective addition of diethylzinc to aldehydes. Microporous and Mesoporous Materials, 2012, 155, 40-46.	2.2	7
748	Production of Self-Assembled Fullerene (C ₆₀) Nanocrystals at Liquid–Liquid Interface. Journal of Nanoscience and Nanotechnology, 2015, 15, 2394-2399.	0.9	7
749	Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic. Carbon, 2018, 134, 334-344.	5.4	7
750	1H NMR study of thermo-induced collapse of polyelectrolyte microgels. EXPRESS Polymer Letters, 2018, 12, 1005-1013.	1.1	7
751	Electrochemical Behavior of Cytochrome C Immobilized in a Magnetically Induced Mesoporous Framework. ChemElectroChem, 2019, 6, 5802-5809.	1.7	7
752	Nanomolecular singlet oxygen photosensitizers based on hemiquinonoid-resorcinarenes, the fuchsonarenes. Chemical Science, 2020, 11, 2614-2620.	3.7	7
753	One-dimensional Sn(<scp>iv</scp>) hydroxide nanofluid toward nonlinear optical switching. Materials Horizons, 2020, 7, 1150-1159.	6.4	7
754	Nelumbo nucifera Seed–Derived Nitrogen-Doped Hierarchically Porous Carbons as Electrode Materials for High-Performance Supercapacitors. Nanomaterials, 2021, 11, 3175.	1.9	7
755	Mechanisms Responsible for Adsorption of Molybdate ions on Alumina for the Production of Medical Radioisotopes. Bulletin of the Chemical Society of Japan, 2022, 95, 129-137.	2.0	7
756	Recycling Waste Paper for Further Implementation: XRD, FTIR, SEM, and EDS Studies. Journal of Oleo Science, 2022, 71, 619-626.	0.6	7

#	Article	IF	CITATIONS
757	AFM Observation of a Supramolecular Rod-like Structure of Bilayer Membrane Formed from Tripeptide-Containing Amphiphiles. Chemistry Letters, 1998, 27, 493-494.	0.7	6
758	FT-IR, TEM, and AFM studies of supramolecular architecture formed by tripeptide-containing monoalkyl amphiphiles. Polymers for Advanced Technologies, 2000, 11, 856-864.	1.6	6
759	Regulation of film electrochemistry and CO binding of a diruthenium complex embedded in artificial lipids on an electrode. Thin Solid Films, 2006, 499, 349-353.	0.8	6
760	Structures and properties of hemiquinone-substituted oxoporphyrinogens. Journal of Porphyrins and Phthalocyanines, 2009, 13, 60-69.	0.4	6
761	Superconducting Nanocrystalline Tin Protected by Carbon. Langmuir, 2009, 25, 2582-2584.	1.6	6
762	Ag Nanoparticle-Poly(acrylic acid) Composite Film with Dynamic Plasmonic Properties. Australian Journal of Chemistry, 2012, 65, 1223.	0.5	6
763	Selfâ€Assembly of a Mononuclear [Fe ^{III} (L)(EtOH) ₂] Complex Bearing an <i>n</i> i>ni>a€Dodecyl Chain on Solid Highly Oriented Pyrolytic Graphite Surfaces. Chemistry - A European Journal, 2012, 18, 16419-16425.	1.7	6
764	Water Induced Microstructure Transformation of Diglycerol Monolaurate Reverse Micelles in Ethylbenzene. Journal of Oleo Science, 2012, 61, 575-584.	0.6	6
765	Layer-by-layer growth of precisely controlled hetero-molecular multi-layers and superlattice structures. Thin Solid Films, 2014, 554, 74-77.	0.8	6
766	Hollow Capsules Fabricated by Template Polymerization of $\langle I \rangle N \langle I \rangle$ -Vinylcaprolactam. Journal of Nanoscience and Nanotechnology, 2015, 15, 2389-2393.	0.9	6
767	An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation. Scientific Reports, 2016, 6, 29224.	1.6	6
768	Selective octabromination of tetraarylporphyrins based on <i>meso</i> -substituent identity: Structural and electrochemical studies. Journal of Porphyrins and Phthalocyanines, 2016, 20, 213-222.	0.4	6
769	Selective Phase Transfer Reagents (OxPâ€crowns) for Chromogenic Detection of Nitrates Especially Ammonium Nitrate. Chemistry - A European Journal, 2020, 26, 13177-13183.	1.7	6
770	Bottom-up fabrication of the multi-layer carbon metal nanosheets. RSC Advances, 2020, 10, 7987-7993.	1.7	6
771	Nanoarchitectonics with porphyrins and related molecules. Journal of Porphyrins and Phthalocyanines, 2021, 25, 897-916.	0.4	6
772	Surface Plasmon Tunability of Core–Shell Au@Mo ₆ Nanoparticles by Shell Thickness Modification. Journal of Physical Chemistry Letters, 2022, 13, 2150-2157.	2.1	6
773	Atomic Force Microscopic Observation of Random Molecular Arrangement in Dialkyl Guanidinium Monolayer. Chemistry Letters, 1996, 25, 857-858.	0.7	5
774	Steroid cyclophane as a versatile artificial receptor. Molecular recognition in water, at air–Water interface, and in lipid bilayer membrane. Journal of Supramolecular Chemistry, 2001, 1, 275-281.	0.4	5

#	Article	IF	Citations
775	Layered Nanoarchitectures between Cationic and Anionic Materials -Composite Assemblies of Polyions, Lipid Bilayers, and Proteins Defect and Diffusion Forum, 2001, 191, 35-60.	0.4	5
776	Construction and Electrochemistry of Langmuir-Blodgett Films of Fullerene Lipid Composite/Hybrid Materials. Journal of Nanoscience and Nanotechnology, 2006, 6, 1779-1785.	0.9	5
777	Novel Highly Acidic Nanoporous Cage Type Materials and Their Catalysis. Topics in Catalysis, 2009, 52, 111-118.	1.3	5
778	Variable temperature characterization of N,N′-Bis(n-pentyl)terrylene-3,4:11,12-tetracarboxylic diimide thin film transistor. Organic Electronics, 2009, 10, 1187-1190.	1.4	5
779	Fabrication of Mesoporous Carbons with Rod and Winding Road Like Morphology Using NbSBA-15 Templates. Journal of Nanoscience and Nanotechnology, 2010, 10, 329-335.	0.9	5
780	Characteristic IR Câ•€ Stretch Enhancement in Monolayers by Nonconjugated, Noncumulated Unsaturated Bonds. Langmuir, 2010, 26, 4594-4597.	1.6	5
781	Immobilization of chiral oxazaborolidine catalyst over highly ordered 3D mesoporous silica with Ia3d symmetry for enantioselective reduction of prochiral ketone. Physical Chemistry Chemical Physics, 2011, 13, 4950.	1.3	5
782	Size Selective Excitonic Transition Energies in Strongly Confined CdSe Quantum Dots. Journal of Nanoscience and Nanotechnology, 2011, 11, 7709-7714.	0.9	5
783	Structure of Diglycerol Monomyristate Reverse Micelles in Styrene: A Small-Angle X-ray Scattering (SAXS) Study. Journal of Nanoscience and Nanotechnology, 2011, 11, 6986-6994.	0.9	5
784	Morphological Control of Porous SiC Templated by As-Synthesized Form of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2011, 11, 6823-6829.	0.9	5
785	Crystallographic Phase Induced Electro-Optic Properties of Nanorod Blend Nematic Liquid Crystal. Journal of Nanoscience and Nanotechnology, 2011, 11, 7729-7734.	0.9	5
786	Hierarchic Template Approach for Synthesis of Silica Nanocapsules with Tuned Shell Thickness. Chemistry Letters, 2011, 40, 840-842.	0.7	5
787	Unexpected but convenient synthesis of soluble meso-tetrakis(3,4-benzoquinone)-substituted porphyrins. Journal of Porphyrins and Phthalocyanines, 2014, 18, 173-181.	0.4	5
788	Multicolour Fluorescent Memory Based on the Interaction of Hydroxy Terphenyls with Fluoride Anions. Chemistry - A European Journal, 2014, 20, 16293-16300.	1.7	5
789	Intercalation compounds of a synthetic alkylammonium-smectite with alkanolamines and their unique humidity response properties. Applied Clay Science, 2015, 104, 88-95.	2.6	5
790	Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres. Applied Physics Letters, 2016, 109, .	1.5	5
791	Phenanthrolineâ€Fused Pyrazinacenes: Oneâ€Pot Synthesis, Tautomerization and a Ru II (2,2′â€bpy) 2 Derivative. European Journal of Inorganic Chemistry, 2018, 2018, 2541-2548.	1.0	5
792	Junctionâ€Controlled Topological Polymerization. Angewandte Chemie, 2018, 130, 5030-5033.	1.6	5

#	Article	IF	CITATIONS
793	Diporphyrin tweezer for multichannel spectroscopic analysis of enantiomeric excess. Frontiers of Chemical Science and Engineering, 2020, 14, 28-40.	2.3	5
794	Hydrotalcite-Supported Ag/Pd Bimetallic Nanoclusters Catalyzed Oxidation and One-Pot Aldol Reaction in Water. Catalysts, 2020, 10, 1120.	1.6	5
795	Novel Concepts for Organic Syntheses Based on Interfaces and Molecular Machines. Current Organic Synthesis, 2012, 9, 428-438.	0.7	5
796	A heterogeneous bifunctional silica-supported Ag ₂ O/Im ⁺ Cl ^{â^'} catalyst for efficient CO ₂ conversion. Catalysis Science and Technology, 2022, 12, 3778-3785.	2.1	5
797	Evaluation of the effects of natural isoquinoline alkaloids on low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) in hepatocytes, as new potential hypocholesterolemic agents. Bioorganic Chemistry, 2022, 121, 105686.	2.0	5
798	Functional capsule membranes. Part 28. A capsule membrane grafted with viologen-containing polymers as a reactor of electron-transfer catalysis in heterophases. Journal of the Chemical Society Perkin Transactions II, 1987, , 1003.	0.9	4
799	Stoichiometric Complexes between Cyclic Phenylazomethines and a Dialkyl Phosphate for Molecular Tiling at the Air–Water Interface. Journal of Nanoscience and Nanotechnology, 2002, 2, 669-674.	0.9	4
800	Spectroscopic characterization and catalytic performances of Iron substituted three dimensional cubic SBA-1 and KIT-5 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2005, , 703-710.	1.5	4
801	Two-dimensional molecular patterns and their dynamic functions: Molecular recognition of aqueous guest by mixed monolayer of alkyl cyclophane and amphiphilic guanidinium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 499-504.	2.3	4
802	Structural Investigation of Diglycerol Monolaurate Reverse Micelles in Nonpolar Oils Cyclohexane and Octane. Journal of Oleo Science, 2009, 58, 235-242.	0.6	4
803	Low Temperature Synthesis and Visible Light Driven Photocatalytic Activity of Highly Crystalline Mesoporous TiO ₂ Particles. Journal of Nanoscience and Nanotechnology, 2010, 10, 8124-8129.	0.9	4
804	Ligand displacement for fixing manganese: relevance to cellular metal ion transport and synthesis of polymeric coordination complexes. Dalton Transactions, 2013, 42, 2779-2785.	1.6	4
805	Novel solid-state luminous composites from a layered inorganic–organic monolith containing neutral porphyrins. Journal of Materials Science, 2017, 52, 12156-12169.	1.7	4
806	Increasing the complexity of oxoporphyrinogen colorimetric sensing chromophores: N-alkylation and \hat{l}^2 -substitution. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1184-1194.	0.4	4
807	1D materials from ionic self-assembly in mixtures containing chromonic liquid crystal mesogens. Physical Chemistry Chemical Physics, 2020, 22, 23276-23285.	1.3	4
808	Enantiomeric Excess Dependent Splitting of NMR Signal through Dynamic Chiral Inversion and Coligand Exchange in a Coordination Complex. Journal of Physical Chemistry Letters, 2020, 11, 8164-8169.	2.1	4
809	Electron and energy transfer in a porphyrin–oxoporphyrinogen–fullerene triad, ZnP–OxP–C ₆₀ . Physical Chemistry Chemical Physics, 2020, 22, 14356-14363.	1.3	4
810	Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1946-1953.	1.9	4

#	Article	IF	CITATIONS
811	Nanoarchitectonics Can Save Our Planet: Nanoarchitectonics for Energy and Environment. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2243-2244.	1.9	4
812	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	0.4	4
813	Exploration of Molecular Function (Molecular Recognition and Molecular Machinery) beyond Molecular Design and Synthesis: Surface Science May Bring One-Million-Times Better Results!?. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 219-227.	0.0	4
814	Mechanical Manipulation of Archimedean Spirals of an Achiral Pyrazinacene for Chiral Assemblies. Advanced Materials Interfaces, 0, , 2200209.	1.9	4
815	Nanostructured silicate film templated by discotic CT-complex column. Studies in Surface Science and Catalysis, 2003, , 73-76.	1.5	3
816	Materials innovation through interfacial physics and chemistry. Physical Chemistry Chemical Physics, 2011, 13, 4780.	1.3	3
817	Highly Basic CaO Nanoparticles in Mesoporous Carbon Materials and Their Excellent Catalytic Activity. Journal of Nanoscience and Nanotechnology, 2012, 12, 4613-4620.	0.9	3
818	Nanophotonics and supramolecular chemistry. Nanophotonics, 2013, 2, 265-277.	2.9	3
819	Supermolecules., 2016,, 25-40.		3
820	Mesostructured fullerene crystals through inverse polymeric micelle assembly. Materials Letters, 2017, 209, 272-275.	1.3	3
821	A Simple Approach to Generate Hollow Carbon Nanospheres Loaded with Uniformly Dispersed Metal Nanoparticles. European Journal of Inorganic Chemistry, 2017, 2017, 5413-5416.	1.0	3
822	Micelle-Assisted Strategy for the Direct Synthesis of Large-Sized Mesoporous Platinum Catalysts by Vapor Infiltration of a Reducing Agent. Nanomaterials, 2018, 8, 841.	1.9	3
823	Demonstration of a Novel Charge-Free Reverse Wormlike Micelle System. Langmuir, 2018, 34, 8670-8677.	1.6	3
824	Thermodynamic and Morphological Properties of Trastuzumab Regulated by the Lipid Composition of Cell Membrane Models at the Air-Water Interface. Biophysical Journal, 2020, 118, 77a.	0.2	3
825	External Magnetic Field-Enhanced Supercapacitor Performance of Cobalt Oxide/Magnetic Graphene Composites. Bulletin of the Chemical Society of Japan, 2021, 94, 2245-2251.	2.0	3
826	Estimation of Enantiomeric Excess Based on Rapid Host–Guest Exchange. Chemosensors, 2021, 9, 259.	1.8	3
827	Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption., 1996, 51, 163.		3
828	Adsorption of protein on three dimensional large pore cage type mesoporous material. Transactions of the Materials Research Society of Japan, 2007, 32, 995-997.	0.2	3

#	Article	IF	CITATIONS
829	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie, 2022, 134, .	1.6	3
830	Synthesis of well-ordered carboxyl group functionalized mesoporous carbon using non-toxic oxidant, (NH4)2S2O8. Studies in Surface Science and Catalysis, 2007, 165, 909-912.	1.5	2
831	One and three dimensional mesoporous carbon nitride molecular sieves with tunable pore diameters. Studies in Surface Science and Catalysis, 2007, 165, 905-908.	1.5	2
832	SAXS and Rheometry Studies of Diglycerol Monolurate Reverse Micelles in Styrene. Journal of Oleo Science, 2011, 60, 393-401.	0.6	2
833	Mesoporous Carbon Encapsulated with SrO Nanoparticles for the Transesterification of Ethyl Acetoacetate. Journal of Nanoscience and Nanotechnology, 2012, 12, 8467-8474.	0.9	2
834	Nanostructured Manganese Oxide Particles from Coordination Complex Decomposition and Their Catalytic Properties for Ethanol Oxidation. Journal of Nanoscience and Nanotechnology, 2012, 12, 8087-8093.	0.9	2
835	Coordinative Nanoporous Polymers Synthesized with Hydrogen-Bonded Columnar Liquid Crystals. Journal of Nanoscience and Nanotechnology, 2012, 12, 7885-7895.	0.9	2
836	Novel Multilayer Thin Films: Hierarchic Layer-by-Layer (Hi-LbL) Assemblies., 2012,, 69-81.		2
837	Cross-linked conjugated polymer assemblies at the air–water interface through supramoleculer bundling. Dalton Transactions, 2013, 42, 15911.	1.6	2
838	Titania Nanoparticles Stabilized HPA in SBA-15 for the Intermolecular Hydroamination of Activated Olefins. ChemCatChem, 2014, 6, 3267-3267.	1.8	2
839	Nanoarchitectonics + future leaders = bright success in materials science and technology. Science and Technology of Advanced Materials, 2015, 16, 010302.	2.8	2
840	Thermally Induced Intraâ€Carboxyl Proton Shuttle in a Molecular Rackâ€andâ€Pinion Cascade Achieving Macroscopic Crystal Deformation. Angewandte Chemie, 2016, 128, 14848-14852.	1.6	2
841	Percolation Behavior of Nonionic Reverse Micellar Solution. Chemistry Letters, 2017, 46, 408-410.	0.7	2
842	Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. Chemical Communications, 2018, 54, 7822-7825.	2.2	2
843	Langmuir-Blodgett Films for Nanoarchitectoncs. , 2019, , 17-29.		2
844	CHAPTER 7. Halloysite and Related Mesoporous Carriers for Advanced Catalysis and Drug Delivery. RSC Smart Materials, 2016, , 207-222.	0.1	2
845	Stoichiometric complexes between cyclic phenylazomethines and a dialkyl phosphate for molecular tiling at the air-water interface. Journal of Nanoscience and Nanotechnology, 2002, 2, 669-74.	0.9	2
846	Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air–Water Interface. Langmuir, 2022, 38, 6481-6490.	1.6	2

#	Article	IF	CITATIONS
847	Nanoarchitectonics, Method for Everything in Materials Science. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3245-3247.	1.9	2
848	Special articles on synthesis and supramolecular structure of functionality amphiphiles. Investigation of deposition of precursor LB films and imidization process using piezoelectric quartz plate Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 1150-1152.	0.1	1
849	Modulation of Photo-Signal Based on Molecular Recognition by Steroid Cyclophane in Liquid Assembly. Molecular Crystals and Liquid Crystals, 2001, 370, 343-346.	0.3	1
850	Information Conversion Devices Based on Molecular Recognition on Nano-Sized Ultrathin Films Kobunshi Ronbunshu, 2001, 58, 363-374.	0.2	1
851	Dynamic cavity array of steroid cyclophanes at membrane surface. Studies in Surface Science and Catalysis, 2001, 132, 443-446.	1.5	1
852	Monolayer of Cyclophane with Multiple Alkyl Chains for Molecular Tiling. Molecular Crystals and Liquid Crystals, 2001, 371, 21-24.	0.3	1
853	Oxoporphyrinogens: From Redox and Spectroscopic Probe for Anion Sensing to a Platform for Construction of Supramolecular Donor-Acceptor Conjugates. ECS Transactions, 2008, 13, 127-136.	0.3	1
854	Dedication to the Special Volume for Dietmar Seyferth. Organometallics, 2010, 29, 4647-4647.	1.1	1
855	Molecular Alignment and Energy-Level Diagram at Heteromolecular Interface of Quaterrylene and Terrylene-3,4,11,12-Tetracarboximide. Journal of Nanoscience and Nanotechnology, 2011, 11, 4888-4892.	0.9	1
856	Self-Assembled Nanoarchitectures: Thin-Film-Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Two-Dimensional Worlds (Small 10/2011). Small, 2011, 7, 1287-1287.	5.2	1
857	Structural Characterizations of Diglycerol Monomyristate Reverse Micelles in Aromatic Solvent Ethylbenzene. Journal of Nanoscience and Nanotechnology, 2012, 12, 3716-3724.	0.9	1
858	Structure and Rheology of Charge-Free Reverse Micelles in Aromatic Liquid Phenyloctane. Journal of Nanoscience and Nanotechnology, 2012, 12, 3701-3715.	0.9	1
859	Structure of Nonionic Reverse Micelles in Octylbenzene. Journal of Dispersion Science and Technology, 2013, 34, 684-691.	1.3	1
860	Interleaved Mesoporous Copper for the Anode Catalysis in Direct Ammonium Borane Fuel Cells. Journal of Nanoscience and Nanotechnology, 2014, 14, 4443-4448.	0.9	1
861	Functional Nanomaterials Prepared by Nanoarchitectonics-Based Supramolecular Assembly. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 45-61.	0.1	1
862	Syntheses and structural characterization of amphiphilic mononuclear complexes [FeIII(L)(X)2] (X =) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
863	Silica Nanomaterials. Methods in Pharmacology and Toxicology, 2016, , 137-151.	0.1	1
864	Hierarchical SnO2 Nanostructure with High Energy {113} Facet as Pt-Support for Improved Oxygen Reduction Reaction. Journal of Nanoscience and Nanotechnology, 2017, 17, 2929-2936.	0.9	1

#	Article	lF	CITATIONS
865	Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline. , 2017, , .		1
866	Layer-by-Layer Nanolayers for Green Science. , 2017, , 335-352.		1
867	Demonstration of Reentrant Relaxor Ferroelectric Phase Transitions in Antiferroelectric-Based (Pb0.50Ba0.50)ZrO3 Ceramics. Energies, 2018, 11, 850.	1.6	1
868	Nanoarchitectonics: Supramolecular Chiral Nanoarchitectonics (Adv. Mater. 41/2020). Advanced Materials, 2020, 32, 2070310.	11.1	1
869	Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. Chemical Communications, 2020, 56, 7447-7450.	2.2	1
870	Nonionic Reverse Micelles near the Critical Point. Journal of Oleo Science, 2013, 62, 1073-1081.	0.6	1
871	Self-Assembly of Functional Protein Multilayers. Surfactant Science, 2003, , .	0.0	1
872	Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects. Current Organic Chemistry, 2022, 26, 580-595.	0.9	1
873	Luminescence properties of SnO2 nanoparticles dispersed in Eu3+ doped SiO2 matrix. Journal of Nanoscience and Nanotechnology, 2008, 8, 1489-93.	0.9	1
874	Special articles on synthesis and supramolecular structure of functionality amphiphiles. Permeation controls through an adsorbed monolayer of alkylsilane amphiphiles immobilized on a porous glass plate Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1990, 1990, 1136-1142.	0.1	0
875	Morphological homogenization of melamine lipid monolayer by using thermal molecular motion: formation of mesoscopic pattern based on hydrogen bonding network. Studies in Surface Science and Catalysis, 2001, , 537-540.	1.5	0
876	Monolayer and bilayer properties of oligopeptide-containing lipids $\hat{a} \in \text{``Difference in phase transition}$ behavior $\hat{a} \in \text{``Studies in Surface Science and Catalysis, 2001, , 553-556.}$	1.5	0
877	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES. Cosmos, 2008, 04, 141-171.	0.4	0
878	RECENT DEVELOPMENTS ON PORPHYRIN ASSEMBLIES. , 2009, , 183-213.		0
879	<i>A Special Section on </i> Atomically Controlled Fabrication Technology. Journal of Nanoscience and Nanotechnology, 2011, 11, 2761-2762.	0.9	0
880	Selected Peer-Reviewed Articles from Asian Conference on Nanoscience and Nanotechnology 2010 (AsiaNANO2010). Journal of Nanoscience and Nanotechnology, 2012, 12, 368-369.	0.9	0
881	Life from Interface. Cellular Origin and Life in Extreme Habitats, 2012, , 237-252.	0.3	0
882	(Invited) Supramolecular Systems of Oxoporphyrinogens, Porphyrins and Fullerenes. ECS Meeting Abstracts, 2012, , .	0.0	0

#	Article	IF	Citations
883	Topographically controlled growth of silver nanoparticle clusters. Physica Status Solidi - Rapid Research Letters, 2012, 6, 202-204.	1.2	O
884	Nanosystem Control: Mechanical Control of Nanomaterials and Nanosystems (Adv. Mater. 2/2012). Advanced Materials, 2012, 24, 157-157.	11.1	0
885	<l>A Special Issue on</l> Nanoarchitectonics of Porous Materials. Journal of Nanoscience and Nanotechnology, 2013, 13, 2397-2398.	0.9	0
886	Patient-Controlled Drug Delivery System Utilizing Mechanical Stimuli-Responsive Gel Carrier. Drug Delivery System, 2013, 28, 92-98.	0.0	0
887	Reaction mediated artificial cell termination: control of vesicle viability using Rh(<scp>i</scp>)-catalyzed hydrogenation. Physical Chemistry Chemical Physics, 2014, 16, 16454-16457.	1.3	0
888	<i>A Special Section on </i> Nanotechnology for Sensing. Journal of Nanoscience and Nanotechnology, 2014, 14, 6467-6468.	0.9	0
889	<i>A Special Issue on</i> Nanospace — Part 2. Journal of Nanoscience and Nanotechnology, 2014, 14, 2689-2689.	0.9	0
890	Supramolecular Chemistry at Interfaces: Origin and Future. Bulletin of Japan Society of Coordination Chemistry, 2016, 67, 30-40.	0.1	0
891	Low-Temperature Catalytic Performance of Nanostructured CuO. Nanoscience and Nanotechnology Letters, 2016, 8, 220-225.	0.4	0
892	Stimuli-Responsive Charge-Free Reverse Micelles in Non-Aqueous Media., 2017,, 37-61.		0
893	Nanoarchitectonics of Biomimetic Membranes. , 2017, , 39-59.		0
894	Selfâ€Assembled Nanosheets: Optogenetic Modulation and Reprogramming of Bacteriorhodopsinâ€Transfected Human Fibroblasts on Selfâ€Assembled Fullerene C60 Nanosheets (Adv.) Tj ETC	Qq 3.0 0 rg	BTØOverlock
895	Electrochemical Behavior of Cytochromeâ€C Immobilized in a Magnetically Induced Mesoporous Framework. ChemElectroChem, 2019, 6, 5770-5770.	1.7	0
896	Layered Nanoarchitectures by Layer-by-Layerï¼^LbLï¼%Assembly:. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 336-342.	0.1	0
897	Frontispiece: 2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, .	1.7	0
898	Fullerene Nanoarchitectonics: Rich Possibilities in Organized Structures from Zero-Dimensional Unit. Oleoscience, 2021, 21, 221-225.	0.0	0
899	Biomimetic Function., 2002,,.		0
900	Fabrication and Function of Biohybrid Nanomaterials Prepared via Supramolecular Approaches., 2008, , 335-366.		0

#	Article	IF	CITATIONS
901	Welcome to the: Advanced Science Letters. Advanced Science Letters, 2008, 1, 1-2.	0.2	0
902	A Chemists Method for Making Pure Clean Graphene. Carbon Nanostructures, 2012, , 129-136.	0.1	0
903	<i>A Special Issue on</i> Nanospace â€" Part 1. Journal of Nanoscience and Nanotechnology, 2014, 14, 2101-2101.	0.9	0
904	Hierarchically Structured Functional Materials: Mesoporous Materials, Layer-by-Layer Films, and Self-Assembled Structures. Journal of the Japan Society of Colour Material, 2018, 91, 310-315.	0.0	0
905	<i>A Special Section on</i> Materials Innovation with Nanoarchitectonics. Journal of Nanoscience and Nanotechnology, 2020, 20, 2651-2651.	0.9	0
906	Nanoarchitectonics. Nanostructure Science and Technology, 2022, , 35-44.	0.1	0
907	Fullerphene Nanosheets: A Bottomâ€Up 2D Material for Singleâ€Carbonâ€Atomâ€Level Molecular Discrimination (Adv. Mater. Interfaces 11/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	0