Fridtjof Lund-Johansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566176/publications.pdf

Version: 2024-02-01

67 papers 5,148 citations

30 h-index 60 g-index

78 all docs 78 docs citations

78 times ranked 8418 citing authors

#	Article	IF	CITATIONS
1	Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: the relevance of time since last rituximab infusion and first experience from sporadic revaccinations. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 19-22.	0.9	39
2	Neutrophil count predicts clinical outcome in hospitalized COVIDâ€19 patients: Results from the NORâ€Solidarity trial. Journal of Internal Medicine, 2022, 291, 241-243.	2.7	9
3	Immunogenicity and Safety of a Third SARS-CoV-2 Vaccine Dose in Patients With Multiple Sclerosis and Weak Immune Response After COVID-19 Vaccination. JAMA Neurology, 2022, 79, 307.	4.5	65
4	Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs, 2022, 14, 2008790.	2.6	51
5	Rituximabâ€treated patients with lymphoma develop strong <scp>CD8</scp> Tâ€cell responses following <scp>COVID</scp> â€19 vaccination. British Journal of Haematology, 2022, 197, 697-708.	1.2	22
6	Chasing neoantigens; invite na \tilde{A} -ve T cells to the party. Current Opinion in Immunology, 2022, 75, 102172.	2.4	3
7	In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs, 2022, 14, 2031482.	2.6	40
8	Fourth dose of the SARS-CoV-2 vaccine in kidney transplant recipients with previously impaired humoral antibody response. American Journal of Transplantation, 2022, 22, 2704-2706.	2.6	24
9	Immunogenicity and Safety of Standard and <scp>Thirdâ€Dose SARS</scp> – <scp>CoV</scp> â€2 Vaccination in Patients Receiving Immunosuppressive Therapy. Arthritis and Rheumatology, 2022, 74, 1321-1332.	2.9	31
10	Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults. Nature Communications, 2022, 13, .	5 . 8	43
11	A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Reports, 2021, 34, 108856.	2.9	101
12	Low Immunization Rate in Kidney Transplant Recipients Also After Dose 2 of the BNT162b2 Vaccine: Continue to Keep Your Guard up!. Transplantation, 2021, 105, e80-e81.	0.5	16
13	Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. New England Journal of Medicine, 2021, 384, 2124-2130.	13.9	1,155
14	Towards reproducibility in large-scale analysis of protein–protein interactions. Nature Methods, 2021, 18, 720-721.	9.0	3
15	Evaluation of the Effects of Remdesivir and Hydroxychloroquine on Viral Clearance in COVID-19. Annals of Internal Medicine, 2021, 174, 1261-1269.	2.0	84
16	Trends in seroprevalence of SARSâ€CoVâ€2 and infection fatality rate in the Norwegian population through the first year of the COVIDâ€19 pandemic. Influenza and Other Respiratory Viruses, 2021, , .	1.5	11
17	Covid-19 transmission in fitness centers in Norway - a randomized trial. BMC Public Health, 2021, 21, 2103.	1.2	14
18	Persistent pulmonary pathology after COVID-19 is associated with high viral load, weak antibody response, and high levels of matrix metalloproteinase-9. Scientific Reports, 2021, 11, 23205.	1.6	26

#	Article	IF	CITATIONS
19	Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nature Communications, 2021, 12, 7113.	5.8	38
20	The Antibody Society's antibody validation webinar series. MAbs, 2020, 12, 1794421.	2.6	26
21	Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25018-25025.	3.3	279
22	443â€An immunotherapy trio in advanced HNSCC for coordinated B and T cell antigen response. , 2020, , .		O
23	Finding Neo (antigens, that is). Blood, 2019, 134, 108-109.	0.6	3
24	High-resolution antibody array analysis of proteins from primary human keratinocytes and leukocytes. PLoS ONE, 2018, 13, e0209271.	1.1	3
25	A high-throughput pipeline for validation of antibodies. Nature Methods, 2018, 15, 909-912.	9.0	52
26	Should we ignore western blots when selecting antibodies for other applications?. Nature Methods, 2017, 14, 215-215.	9.0	13
27	Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. Journal of Hepatology, 2017, 66, 1214-1222.	1.8	51
28	T cell population expansion in response to allogeneic cancer vaccine alone (DPV-001) or with granulocyte-macrophage colony-stimulating factor (GM-CSF) or imiquimod (I) for definitively-treated stage III NSCLC patients (pts) Journal of Clinical Oncology, 2017, 35, e14639-e14639.	0.8	5
29	[Letter to the Editor] The need for improved education and training in research antibody usage and validation practices. BioTechniques, 2016, 61, 16-18.	0.8	30
30	Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 2016, 352, 1337-1341.	6.0	414
31	MetaMass, a tool for meta-analysis of subcellular proteomics data. Nature Methods, 2016, 13, 837-840.	9.0	30
32	High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Molecular and Cellular Proteomics, 2016, 15, 1246-1261.	2.5	10
33	Antibody engineering & therapeutics, the annual meeting of the antibody society December 7–10, 2015, San Diego, CA, USA. MAbs, 2016, 8, 617-652.	2.6	7
34	Enhanced liver fibrosis score predicts transplantâ€free survival in primary sclerosing cholangitis. Hepatology, 2015, 62, 188-197.	3.6	106
35	Recombinant renewable polyclonal antibodies. MAbs, 2015, 7, 32-41.	2.6	31
36	Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 403-408.	3.3	40

#	Article	lF	Citations
37	Multilevel Molecular Profiling to Dissect Resistance to Tyrosine Kinase Inhibitors in TEL/ABL Positive Acute Lymphoblastic Leukemia. Blood, 2014, 124, 3637-3637.	0.6	O
38	Novel Flow Cytometry-Based Method Of Affinity Proteomics Revealing Expression, Post-Translational Modification and Proteolysis In Primary Childhood Acute Leukemias. Blood, 2013, 122, 2553-2553.	0.6	O
39	Antibody array analysis of labelled proteomes: how should we control specificity?. New Biotechnology, 2012, 29, 578-585.	2.4	19
40	An automated analysis of highly complex flow cytometryâ€based proteomic data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 120-129.	1.1	13
41	Multiplexed immunoâ€precipitation with 1725 commercially available antibodies to cellular proteins. Proteomics, 2011, 11, 4578-4582.	1.3	27
42	New Targets in Cytometric Investigation of Acute Leukemia Selected From Gene Profiling Studies. Blood, 2011, 118, 2536-2536.	0.6	0
43	Rapid Generation of Rotavirus-Specific Human Monoclonal Antibodies from Small-Intestinal Mucosa. Journal of Immunology, 2010, 185, 5377-5383.	0.4	83
44	Antibody Array Analysis with Label-based Detection and Resolution of Protein Size. Molecular and Cellular Proteomics, 2009, 8, 245-257.	2.5	42
45	Plasmacytoid DCs regulate recall responses by rapid induction of IL-10 in memory T cells. Blood, 2007, 109, 3369-3376.	0.6	19
46	Efficient Generation of Tumor-Specific, Cytotoxic T Cells by Genetic Transfer of allo-MHC Blood, 2007, 110, 2755-2755.	0.6	0
47	Signaling through Toll-like Receptor 7/8 Induces the Differentiation of Human Bone Marrow CD34+ Progenitor Cells along the Myeloid Lineage. Journal of Molecular Biology, 2006, 364, 945-954.	2.0	150
48	CD11c+ dendritic cells and plasmacytoid DCs are activated by human cytomegalovirus and retain efficient T cell-stimulatory capability upon infection. Blood, 2006, 107, 2022-2029.	0.6	50
49	Plasmacytoid dendritic cells activate allergen-specific TH2 memory cells: Modulation by CpG oligodeoxynucleotides. Journal of Allergy and Clinical Immunology, 2004, 114, 436-443.	1.5	73
50	Epidermal Growth Factor Receptor Inhibition Induces Trichomegaly. Acta Oncológica, 2003, 42, 345-346.	0.8	106
51	Involvement of plasmacytoid dendritic cells in human diseases. Human Immunology, 2002, 63, 1201-1205.	1.2	57
52	Plasmacytoid Dendritic Cells (Natural Interferon- $\hat{l}\pm\hat{l}^2$ -Producing Cells) Accumulate in Cutaneous Lupus Erythematosus Lesions. American Journal of Pathology, 2001, 159, 237-243.	1.9	669
53	Flow cytometric analysis of immunoprecipitates: High-throughput analysis of protein phosphorylation and protein-protein interactions. , 2000, 39, 250-259.		44
54	Experimentally Induced Recruitment of Plasmacytoid (CD123high) Dendritic Cells in Human Nasal Allergy. Journal of Immunology, 2000, 165, 4062-4068.	0.4	256

#	Article	lF	CITATIONS
55	Primitive human hematopoietic progenitor cells express receptors for granulocyte-macrophage colony-stimulating factor. Experimental Hematology, 1999, 27, 762-772.	0.2	9
56	Apoptosis in hematopoietic cells is associated with an extensive decrease in cellular phosphotyrosine content that can be inhibited by the tyrosine phosphatase antagonist pervanadate., 1996, 25, 182-190.		15
57	Expression of leukocyte differentiation antigens during the differentiation of HL-60 cells induced by 1,25-dihydroxyvitamin D3: comparison with the maturation of normal monocytic and granulocytic bone marrow cells. Journal of Leukocyte Biology, 1995, 58, 547-555.	1.5	68
58	Flow cytometric assessment of peripheral blood contamination and proliferative activity of human bone marrow cell populations. Cytometry, 1995, 19, 77-85.	1.8	24
59	Expression of cell surface antigens during the differentiation of HL-60 cells induced by 1,25-ihydroxyvitamin D3, retinoic acid and DMSO. Leukemia Research, 1995, 19, 57-64.	0.4	55
60	Expression of Cell Surface Markers during Differentiation of CD34+, CD38â^/lo Fetal and Adult Bone Marrow Cells. ImmunoMethods, 1994, 5, 179-188.	0.8	38
61	Activation of human monocytes and granulocytes by monoclonal antibodies to glycosylphosphatidelinositol-anchored antigens. European Journal of Immunology, 1993, 23, 2782-2791.	1.6	86
62	Use of Monoclonal Antibodies to Study Hematopoietic Cell Function. Stem Cells and Development, 1993, 2, 395-412.	1.0	0
63	Differential surface expression of cell adhesion molecules during granulocyte maturation. Journal of Leukocyte Biology, 1993, 54, 47-55.	1.5	164
64	Signal transduction in monocytes and granulocytes measured by multiparameter flow cytometry. Cytometry, 1992, 13, 693-702.	1.8	45
65	Negative selection of human monocytes using magnetic particles covered by anti-lymphocyte antibodies. Journal of Immunological Methods, 1991, 137, 89-94.	0.6	38
66	Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry, 1990, 11, 610-616.	1.8	15
67	Signal transduction in human monocytes and granulocytes through the PI-linked antigen CD14. FEBS Letters, 1990, 273, 55-58.	1.3	43