Wenjun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3566026/publications.pdf

Version: 2024-02-01

57	3,879	26	55
papers	citations	h-index	g-index
59	59	59	4191
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron, 1994, 13, 1071-1082.	8.1	1,323
2	Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nature Medicine, 2002, 8, 268-273.	30.7	381
3	Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell, 2015, 17, 624-634.	11.1	235
4	The ablation of glial fibrillary acidic proteinâ€positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. European Journal of Neuroscience, 2003, 18, 76-84.	2.6	206
5	A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation. Stem Cell Reports, 2015, 4, 1031-1045.	4.8	189
6	Don't Look: Growing Clonal Versus Nonclonal Neural Stem Cell Colonies. Stem Cells, 2008, 26, 2938-2944.	3.2	139
7	Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. Journal of Controlled Release, 2013, 172, 1-11.	9.9	117
8	Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury. Stem Cell Reports, 2015, 5, 166-173.	4.8	91
9	Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release. Journal of Controlled Release, 2006, 110, 400-407.	9.9	79
10	The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Translational Medicine, 2020, 9, 1509-1530.	3.3	76
11	Transient Maternal IL-6 Mediates Long-Lasting Changes in Neural Stem Cell Pools by Deregulating an Endogenous Self-Renewal Pathway. Cell Stem Cell, 2013, 13, 564-576.	11.1	75
12	Circumventing the blood–brain barrier: Local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. Journal of Controlled Release, 2015, 215, 1-11.	9.9	65
13	Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nature Medicine, 2020, 26, 1285-1294.	30.7	65
14	Home sweet home: the neural stem cell niche throughout development and after injury. Cell and Tissue Research, 2018, 371, 125-141.	2.9	55
15	Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke. Science Advances, 2019, 5, eaax1912.	10.3	51
16	Injectable hydrogel enables local and sustained co-delivery to the brain: Two clinically approved biomolecules, cyclosporine and erythropoietin, accelerate functional recovery in rat model of stroke. Biomaterials, 2020, 235, 119794.	11.4	44
17	Primitive Neural Stem Cells in the Adult Mammalian Brain Give Rise to GFAP-Expressing Neural Stem Cells. Stem Cell Reports, 2014, 2, 810-824.	4.8	42
18	Local Delivery of Brain-Derived Neurotrophic Factor Enables Behavioral Recovery and Tissue Repair in Stroke-Injured Rats. Tissue Engineering - Part A, 2019, 25, 1175-1187.	3.1	40

#	Article	IF	CITATIONS
19	Initial cell maturity changes following transplantation in a hyaluronan-based hydrogel and impacts therapeutic success in the stroke-injured rodent brain. Biomaterials, 2019, 192, 309-322.	11.4	36
20	Transplantation of Directly Reprogrammed Human Neural Precursor Cells Following Stroke Promotes Synaptogenesis and Functional Recovery. Translational Stroke Research, 2020, 11, 93-107.	4.2	36
21	Cyclosporin A enhances neural precursor cell survival in mice through a calcineurin-independent pathway. DMM Disease Models and Mechanisms, 2014, 7, 953-961.	2.4	33
22	Neural stem and progenitor cells in the aged subependyma are activated by the young niche. Neurobiology of Aging, 2014, 35, 1669-1679.	3.1	33
23	<i>In Vitro</i> Maturation of Human iPSC-Derived Neuroepithelial Cells Influences Transplant Survival in the Stroke-Injured Rat Brain. Tissue Engineering - Part A, 2018, 24, 351-360.	3.1	32
24	Biphasic monopolar electrical stimulation induces rapid and directed galvanotaxis in adult subependymal neural precursors. Stem Cell Research and Therapy, 2015, 6, 67.	5 . 5	31
25	Environmental Factors That Influence Stem Cell Migration: An "Electric Field― Stem Cells International, 2017, 2017, 1-9.	2.5	31
26	Assessing cognitive function following medial prefrontal stroke in the rat. Behavioural Brain Research, 2015, 294, 102-110.	2.2	28
27	Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells, 2022, 11, 846.	4.1	26
28	Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Research and Therapy, 2019, 10, 166.	5.5	24
29	Dual embryonic origin of the mammalian enteric nervous system. Developmental Biology, 2019, 445, 256-270.	2.0	23
30	Building a central nervous system: The neural stem cell lineage revealed. Neurogenesis (Austin, Tex), 2017, 4, e1300037.	1.5	22
31	Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behavioural Brain Research, 2016, 304, 42-50.	2.2	21
32	Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain. Stem Cells, 2017, 35, 2071-2082.	3.2	21
33	Adult Neural Stem Cells: Attempting to Solve the Identity Crisis. Developmental Neuroscience, 2004, 26, 93-100.	2.0	19
34	Myelin Basic Protein Regulates Primitive and Definitive Neural Stem Cell Proliferation from the Adult Spinal Cord. Stem Cells, 2017, 35, 485-496.	3.2	18
35	Charge-Balanced Electrical Stimulation Can Modulate Neural Precursor Cell Migration in the Presence of Endogenous Electric Fields in Mouse Brains. ENeuro, 2019, 6, ENEURO.0382-19.2019.	1.9	18
36	Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Research, 2016, 16, 79-87.	0.7	17

#	Article	IF	Citations
37	Cyclosporin A-Mediated Activation of Endogenous Neural Precursor Cells Promotes Cognitive Recovery in a Mouse Model of Stroke. Frontiers in Aging Neuroscience, 2018, 10, 93.	3.4	17
38	Neural stem cell heterogeneity in the mammalian forebrain. Progress in Neurobiology, 2018, 170, 2-36.	5.7	15
39	Electric Field Application (i>In Vivo (i) Regulates Neural Precursor Cell Behavior in the Adult Mammalian Forebrain. ENeuro, 2020, 7, ENEURO.0273-20.2020.	1.9	13
40	A 3D Printed Device for Low Cost Neural Stimulation in Mice. Frontiers in Neuroscience, 2019, 13, 784.	2.8	11
41	Metformin pretreatment rescues olfactory memory associated with subependymal zone neurogenesis in a juvenile model of cranial irradiation. Cell Reports Medicine, 2021, 2, 100231.	6.5	11
42	Metformin effects on brain development following cranial irradiation in a mouse model. Neuro-Oncology, 2021, 23, 1523-1536.	1.2	10
43	Lineage tracing reveals the hierarchical relationship between neural stem cell populations in the mouse forebrain. Scientific Reports, 2019, 9, 17730.	3.3	9
44	Nicheâ€dependent inhibition of neural stem cell proliferation and oligodendrogenesis is mediated by the presence of myelin basic protein. Stem Cells, 2021, 39, 776-786.	3.2	8
45	Subacute metformin treatment reduces inflammation and improves functional outcome following neonatal hypoxia ischemia. Brain, Behavior, & Immunity - Health, 2020, 7, 100119.	2.5	6
46	A Neurosphere Assay to Evaluate Endogenous Neural Stem Cell Activation in a Mouse Model of Minimal Spinal Cord Injury. Journal of Visualized Experiments, 2018, , .	0.3	5
47	Skin-derived precursor cells undergo substrate-dependent galvanotaxis that can be modified by neighbouring cells. Stem Cell Research, 2018, 31, 95-101.	0.7	5
48	Reply to "Hematopoietic potential of neural stem cells― Nature Medicine, 2002, 8, 536-537.	30.7	4
49	Transplantation of Human Cortically-Specified Neuroepithelial Progenitor Cells Leads to Improved Functional Outcomes in a Mouse Model of Stroke. Frontiers in Cellular Neuroscience, 2021, 15, 654290.	3.7	4
50	Cranial irradiation in juvenile mice leads to early and sustained defects in the stem and progenitor cell pools and late cognitive impairments. Brain Research, 2020, 1727, 146548.	2.2	3
51	Substrate-Dependent Galvanotaxis of Directly Reprogrammed Human Neural Precursor Cells. Bioelectricity, 2020, 2, 229-237.	1.1	3
52	Stem cells in the adult CNS revealed: examining their regulation by myelin basic protein. Neural Regeneration Research, 2016, 11, 1916.	3.0	3
53	Constraintâ€induced movement therapy promotes motor recovery after neonatal stroke in the absence of neural precursor activation. European Journal of Neuroscience, 2021, 53, 1334-1349.	2.6	2
54	Stem cell heterogeneity and regenerative competence: the enormous potential of rare cells. Neural Regeneration Research, 2021, 16, 285.	3.0	1

#	Article	IF	CITATIONS
55	Response to: Where do you come from and what are you going to become, reactive astrocyte?. Stem Cell Investigation, 2016, 3, 32-32.	3.0	0
56	Bioengineering Strategies to Control Neural Stem/Progenitor Cell Differentiation. FASEB Journal, 2009, 23, .	0.5	0
57	Editorial: Regulation of Cellular Reprogramming for Post-stroke Tissue Regeneration: Bridging a Gap Between Basic Research and Clinical Application. Frontiers in Cell and Developmental Biology, 2021, 9, 793900.	3.7	0