Changkui Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565926/publications.pdf

Version: 2024-02-01

71 3,884 35 61 papers citations h-index g-index

72 72 72 3574
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chemical Reviews, 2022, 122, 167-208.	23.0	172
2	Revealing the Molecular-Level Interactions between Cationic Fluorinated Polymer Sorbents and the Major PFAS Pollutant PFOA. Macromolecules, 2022, 55, 1077-1087.	2.2	17
3	Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomaterialia, 2022, 142, 298-307.	4.1	7
4	Investigation of heparin-loaded poly(ethylene glycol)-based hydrogels as anti-thrombogenic surface coatings for extracorporeal membrane oxygenation. Journal of Materials Chemistry B, 2022, 10, 4974-4983.	2.9	9
5	Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nature Materials, 2022, 21, 1057-1065.	13.3	92
6	Biomimetic core–shell silica nanoparticles using a dual-functional peptide. Journal of Colloid and Interface Science, 2021, 581, 185-194.	5.0	14
7	Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules, 2021, 22, 330-339.	2.6	43
8	Photo-directing chemoepitaxy: the versatility of poly(aryl methacrylate) films in tuning block copolymer wetting. Polymer Chemistry, 2021, 12, 3201-3209.	1.9	1
9	Amphiphilic Perfluoropolyether Copolymers for the Effective Removal of Polyfluoroalkyl Substances from Aqueous Environments. Macromolecules, 2021, 54, 3447-3457.	2.2	18
10	Photo/Thermal Dual Responses in Aqueous-Soluble Copolymers Containing 1-Naphthyl Methacrylate. Macromolecules, 2021, 54, 4860-4870.	2.2	5
11	Editorial: Design, Synthesis and Biomedical Applications of Functional Polymers. Frontiers in Chemistry, 2021, 9, 681189.	1.8	1
12	Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chemistry of Materials, 2021, 33, 6484-6500.	3.2	25
13	Ecoâ€friendly biomoleculeâ€nanomaterial hybrids as nextâ€generation agrochemicals for topical delivery. EcoMat, 2021, 3, e12132.	6.8	16
14	Tuning the thermoresponsive properties of PEG-based fluorinated polymers and stimuli responsive drug release for switchable ¹⁹ F magnetic resonance imaging. Polymer Chemistry, 2021, 12, 5438-5448.	1.9	5
15	Enhanced Mucosal Transport of Polysaccharide–Calcium Phosphate Nanocomposites for Oral Vaccination. ACS Applied Bio Materials, 2021, 4, 7865-7878.	2.3	9
16	Use of Microfluidics to Fabricate Bioerodable Lipid Hybrid Nanoparticles Containing Hydromorphone or Ketamine for the Relief of Intractable Pain. Pharmaceutical Research, 2020, 37, 211.	1.7	9
17	Functional polymers as metal-free magnetic resonance imaging contrast agents. Progress in Polymer Science, 2020, 108, 101286.	11.8	25
18	The Impact of Polymer Size and Cleavability on the Intravenous Pharmacokinetics of PEG-Based Hyperbranched Polymers in Rats. Nanomaterials, 2020, 10, 2452.	1.9	8

#	Article	IF	CITATIONS
19	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
20	Tuning of the Aggregation Behavior of Fluorinated Polymeric Nanoparticles for Improved Therapeutic Efficacy. ACS Nano, 2020, 14, 7425-7434.	7.3	31
21	Proteins Conjugated with Sulfoxide-Containing Polymers Show Reduced Macrophage Cellular Uptake and Improved Pharmacokinetics. ACS Macro Letters, 2020, 9, 799-805.	2.3	30
22	Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. Small, 2020, 16, e2002115.	5.2	49
23	Lowâ€Fouling Fluoropolymers for Bioconjugation and Inâ€Vivo Tracking. Angewandte Chemie, 2020, 132, 4759-4765.	1.6	22
24	Multimodal Nanoprobe for Pancreatic Beta Cell Detection and Amyloidosis Mitigation. Chemistry of Materials, 2020, 32, 1080-1088.	3.2	16
25	Lowâ€Fouling Fluoropolymers for Bioconjugation and Inâ€Vivo Tracking. Angewandte Chemie - International Edition, 2020, 59, 4729-4735.	7.2	40
26	Integrating Fluorinated Polymer and Manganeseâ€Layered Double Hydroxide Nanoparticles as pHâ€activated ¹⁹ F MRI Agents for Specific and Sensitive Detection of Breast Cancer. Small, 2019, 15, e1902309.	5.2	49
27	Fluorinated Glycopolymers as Reduction-responsive ¹⁹ F MRI Agents for Targeted Imaging of Cancer. Biomacromolecules, 2019, 20, 2043-2050.	2.6	35
28	Importance of Thermally Induced Aggregation on ¹⁹ F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-oxazoline)s. Biomacromolecules, 2019, 20, 365-374.	2.6	36
29	Bioconjugation and Fluorescence Labeling of Iron Oxide Nanoparticles Grafted with Bromomaleimide-Terminal Polymers. Biomacromolecules, 2018, 19, 4423-4429.	2.6	32
30	Enhanced Performance of Polymeric ¹⁹ F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules, 2018, 51, 5875-5882.	2.2	50
31	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, 8376-8383.	7.2	165
32	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, 8496-8503.	1.6	36
33	Frontispiece: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
34	Frontispiz: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, .	1.6	0
35	RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polymer Chemistry, 2017, 8, 4637-4643.	1.9	69
36	Polymeric ¹⁹ F MRI agents responsive to reactive oxygen species. Polymer Chemistry, 2017, 8, 4585-4595.	1.9	57

#	Article	IF	Citations
37	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry, 2017, 8, 537-544.	1.9	93
38	Photoacid-mediated ring opening polymerization driven by visible light. Chemical Communications, 2016, 52, 7126-7129.	2.2	182
39	One-Pot Synthesis of Block Copolymers by Orthogonal Ring-Opening Polymerization and PET-RAFT Polymerization at Ambient Temperature. ACS Macro Letters, 2016, 5, 444-449.	2.3	74
40	Selective Photoactivation: From a Single Unit Monomer Insertion Reaction to Controlled Polymer Architectures. Journal of the American Chemical Society, 2016, 138, 3094-3106.	6.6	250
41	Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polymer Chemistry, 2016, 7, 546-552.	1.9	18
42	Lighting up the PEGylation agents via the Hantzsch reaction. Polymer Chemistry, 2016, 7, 523-528.	1.9	13
43	Optically Active Polymer Via Oneâ€Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. Macromolecular Chemistry and Physics, 2015, 216, 1483-1489.	1.1	8
44	New synthetic strategy for facile synthesis of functional polymers by one-pot combination of controlled radical polymerization and enzymatic reaction. Polymer International, 2015, 64, 705-712.	1.6	4
45	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132.	2.3	50
46	Postpolymerization Modification of Poly(dihydropyrimidin-2(1 <i>H</i>)-thione)s via the Thioureaâ€"Haloalkane Reaction to Prepare Functional Polymers. ACS Macro Letters, 2015, 4, 843-847.	2.3	39
47	From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. Polymer Chemistry, 2015, 6, 4940-4945.	1.9	58
48	The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polymer Chemistry, 2015, 6, 8233-8239.	1.9	118
49	Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Letters, 2015, 4, 1189-1193.	2.3	45
50	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6, 607-612.	1.9	91
51	The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. Polymer Chemistry, 2015, 6, 509-513.	1.9	48
52	Facile Oneâ€Pot Synthesis of New Functional Polymers through Multicomponent Systems. Macromolecular Chemistry and Physics, 2014, 215, 486-492.	1.1	30
53	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. Polymer Chemistry, 2014, 5, 6656-6661.	1.9	28
54	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polymer Chemistry, 2014, 5, 2704-2708.	1.9	93

#	Article	IF	CITATIONS
55	Synthesis of Multifunctional Polymers through the Ugi Reaction for Protein Conjugation. Macromolecules, 2014, 47, 5607-5612.	2.2	76
56	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules, 2014, 47, 4676-4683.	2.2	48
57	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polymer Chemistry, 2014, 5, 2695-2699.	1.9	51
58	Combining Enzymatic Monomer Transformation with Photoinduced Electron Transfer â^ Reversible Addition†Fragmentation Chain Transfer for the Synthesis of Complex Multiblock Copolymers. ACS Macro Letters, 2014, 3, 633-638.	2.3	66
59	Thermo and pH Dual-Responsive Materials for Controllable Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2026-2030.	4.0	257
60	Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization. Polymer Chemistry, 2013, 4, 5720.	1.9	19
61	A multicomponent polymerization system: click–chemoenzymatic–ATRP in one-pot for polymer synthesis. Polymer Chemistry, 2013, 4, 466-469.	1.9	38
62	One-pot synthesis of optically active polymervia concurrent cooperation of enzymatic resolution and living radical polymerization. Polymer Chemistry, 2013, 4, 264-267.	1.9	28
63	A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry?. Polymer Chemistry, 2013, 4, 5395.	1.9	119
64	Hierarchically Porous Chitosan–PEG–Silica Biohybrid: Synthesis and Rapid Cell Adsorption. Advanced Healthcare Materials, 2013, 2, 302-305.	3.9	10
65	Nonionic polymer cross-linked chitosan hydrogel: preparation and bioevaluation. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1564-1574.	1.9	26
66	One-Pot Cascade Synthetic Strategy: A Smart Combination of Chemoenzymatic Transesterification and Raft Polymerization. ACS Macro Letters, 2012, 1, 1224-1227.	2.3	38
67	PEGylation and polyPEGylation of nanodiamond. Polymer, 2012, 53, 3178-3184.	1.8	141
68	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	1.9	105
69	Combining chemoenzymatic monomer transformation with ATRP: a facile "one-pot―approach to functional polymers. Chemical Communications, 2012, 48, 9062.	2.2	34
70	CO ₂ â€Responsive Polymeric Vesicles that Breathe. Angewandte Chemie - International Edition, 2011, 50, 4923-4927.	7.2	277
71	ELECTROACTIVE CONDUCTING POLYMERS FOR BIOMEDICAL APPLICATIONS. Acta Polymerica Sinica, 2010, 00, 1399-1405.	0.0	11