Anke M Smits

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BMP Receptor Inhibition Enhances Tissue Repair in Endoglin Heterozygous Mice. International Journal of Molecular Sciences, 2021, 22, 2010.	1.8	2
2	Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 4804.	1.8	10
3	Generation, Characterization, and Application of Inducible Proliferative Adult Human Epicardium-Derived Cells. Cells, 2021, 10, 2064.	1.8	3
4	Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy. Science Translational Medicine, 2021, 13, eabf2750.	5.8	16
5	Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Frontiers in Cardiovascular Medicine, 2021, 8, 750243.	1.1	17
6	Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development (Cambridge), 2021, 148, .	1.2	25
7	Activin A and ALK4 Identified as Novel Regulators of Epithelial to Mesenchymal Transition (EMT) in Human Epicardial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 765007.	1.8	0
8	Disturbed NO signalling gives rise to congenital bicuspid aortic valve and aortopathy. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	10
9	Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15182-15192.	3.3	93
10	Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart?. Biomolecules, 2020, 10, 404.	1.8	15
11	The human amniotic fluid stem cell secretome exerts cardio-active paracrine potential for myocardial repair and regeneration. Cytotherapy, 2020, 22, S171.	0.3	Ο
12	Human epicardium-derived cells reinforce cardiac sympathetic innervation. Journal of Molecular and Cellular Cardiology, 2020, 143, 26-37.	0.9	9
13	Toward Biological Pacing by Cellular Delivery of Hcn2/SkM1. Frontiers in Physiology, 2020, 11, 588679.	1.3	5
14	A small molecule screen identifies novel inducers of EMT that may increase epicardium-driven repair of the heart. European Heart Journal, 2020, 41, .	1.0	0
15	Single-cell RNA sequencing of human fetal epicardium reveals novel markers and regulators of EMT. European Heart Journal, 2020, 41, .	1.0	Ο
16	Supporting data on inÂvitro cardioprotective and proliferative paracrine effects by the human amniotic fluid stem cell secretome. Data in Brief, 2019, 25, 104324.	0.5	14
17	In vivo and in vitro Approaches Reveal Novel Insight Into the Ability of Epicardium-Derived Cells to Create Their Own Extracellular Environment. Frontiers in Cardiovascular Medicine, 2019, 6, 81.	1.1	7
18	Therapeutic gene editing, making a point. Cardiovascular Research, 2019, 115, e39-e40.	1.8	2

#	Article	IF	CITATIONS
19	Reactivating endogenous mechanisms of cardiac regeneration via paracrine boosting using the human amniotic fluid stem cell secretome. International Journal of Cardiology, 2019, 287, 87-95.	0.8	57
20	Highlights of AHA Scientific Sessions 2018: a report from the Scientists of Tomorrow. Cardiovascular Research, 2019, , .	1.8	1
21	Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. Journal of Cardiovascular Translational Research, 2019, 12, 5-17.	1.1	53
22	The epicardium as a source of multipotent adult cardiac progenitor cells: Their origin, role and fate. Pharmacological Research, 2018, 127, 129-140.	3.1	89
23	Scientists on the Spot: Carol Ann Remme on her research and career. Cardiovascular Research, 2018, 114, e102-e102.	1.8	3
24	Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Frontiers in Physiology, 2018, 9, 1497.	1.3	33
25	Dr Anke Smits talks to Professor Johann Wojta on the benefits for young investigators at FCVB 2018. Cardiovascular Research, 2018, 114, e56-55.	1.8	1
26	P112Epithelial-to-mesenchymal transition is required for a therapeutic effect of epicardial-derived cells after myocardial infarction. Cardiovascular Research, 2018, 114, S29-S29.	1.8	0
27	Cell migration in the cardiovascular system: a force to be reckoned with?. Cardiovascular Research, 2018, 114, e78-e80.	1.8	Ο
28	The Isolation and Culture of Primary Epicardial Cells Derived from Human Adult and Fetal Heart Specimens. Journal of Visualized Experiments, 2018, , .	0.2	15
29	Glycosylated Cell Surface Markers for the Isolation of Human Cardiac Progenitors. Stem Cells and Development, 2017, 26, 1552-1565.	1.1	3
30	Human Cardiomyocyte Progenitor Cells in Co-culture with Rat Cardiomyocytes Form a Pro-arrhythmic Substrate: Evidence for Two Different Arrhythmogenic Mechanisms. Frontiers in Physiology, 2017, 8, 797.	1.3	3
31	Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction. PLoS ONE, 2017, 12, e0189805.	1.1	6
32	Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. Journal of Cardiovascular Development and Disease, 2016, 3, 28.	0.8	33
33	Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN. Advanced Healthcare Materials, 2016, 5, 2555-2565.	3.9	158
34	Human fetal and adult epicardial-derived cells: a novel model to study their activation. Stem Cell Research and Therapy, 2016, 7, 174.	2.4	45
35	The roadmap of WT1 protein expression in the human fetal heart. Journal of Molecular and Cellular Cardiology, 2016, 90, 139-145.	0.9	22
36	The Derivation of Primary Human Epicardiumâ€Derived Cells. Current Protocols in Stem Cell Biology, 2015, 35, 2C,5,1-2C,5,12.	3.0	11

#	Article	IF	CITATIONS
37	The epicardium as modulator of the cardiac autonomic response during early development. Journal of Molecular and Cellular Cardiology, 2015, 89, 251-259.	0.9	13
38	Epicardium-Derived Heart Repair. Journal of Developmental Biology, 2014, 2, 84-100.	0.9	25
39	A straightforward guide to the basic science behind cardiovascular cell-based therapies. Heart, 2014, 100, 1153-1157.	1.2	18
40	lsolation and Differentiation of Human Cardiomyocyte Progenitor Cells into Cardiomyocytes. Methods in Molecular Biology, 2012, 879, 339-349.	0.4	10
41	Cardiac Regeneration: Stem Cells and Beyond. Current Medicinal Chemistry, 2012, 19, 5993-6002.	1.2	5
42	Cardiomyogenic differentiationâ€independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischaemic mouse hearts. Journal of Cellular and Molecular Medicine, 2012, 16, 1508-1521.	1.6	39
43	Cardiac Regeneration: Stem Cells and Beyond. Current Medicinal Chemistry, 2012, 19, 5993-6002.	1.2	6
44	Low oxygen tension positively influences cardiomyocyte progenitor cell function. Journal of Cellular and Molecular Medicine, 2011, 15, 2723-2734.	1.6	34
45	Foetal and adult cardiomyocyte progenitor cells have different developmental potential. Journal of Cellular and Molecular Medicine, 2010, 14, 861-870.	1.6	29
46	Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovascular Research, 2010, 85, 494-502.	1.8	35
47	Endothelial cells are activated during hypoxia via endoglin/ALK-1/SMAD1/5 signaling in vivo and in vitro. Biochemical and Biophysical Research Communications, 2010, 392, 283-288.	1.0	44
48	Cell Therapy for Myocardial Regeneration. Current Molecular Medicine, 2009, 9, 287-298.	0.6	18
49	Increased Expression of the Transforming Growth Factor-β Signaling Pathway, Endoglin, and Early Growth Response-1 in Stable Plaques. Stroke, 2009, 40, 439-447.	1.0	50
50	A new in vitro model for stem cell differentiation and interaction. Stem Cell Research, 2009, 2, 108-112.	0.3	5
51	Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 2009, 4, 232-243.	5.5	276
52	Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovascular Research, 2009, 83, 527-535.	1.8	158
53	Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Netherlands Heart Journal, 2008, 16, 163-169.	0.3	129
54	TGF-Î ² 1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 2008, 1, 138-149.	0.3	214

#	Article	IF	CITATIONS
55	A novel real-time PCR assay to determine relative replication capacity for HIV-1 protease variants and/or reverse transcriptase variants. Journal of Virological Methods, 2006, 133, 185-194.	1.0	33
56	The role of stem cells in cardiac regeneration. Journal of Cellular and Molecular Medicine, 2005, 9, 25-36.	1.6	98
57	Ischemic heart disease: models of myocardial hypertrophy and infarction. Drug Discovery Today: Disease Models, 2004, 1, 273-278.	1.2	1
58	Bone-Marrow-Derived Cells Contribute to Glomerular Endothelial Repair in Experimental Glomerulonephritis. American Journal of Pathology, 2003, 163, 553-562.	1.9	166