James Scott MacIvor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565562/publications.pdf

Version: 2024-02-01

38 3,513 25 38 papers citations h-index g-index

39 39 39 3743
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Urban biodiversity: State of the science and future directions. Urban Ecosystems, 2022, 25, 1083-1096.	1.1	44
2	Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosystems, 2022, 25, 1589-1609.	1.1	16
3	A Research Agenda for Urban Biodiversity in the Global Extinction Crisis. BioScience, 2021, 71, 268-279.	2.2	51
4	Linking bacterial diversity to floral identity in the bumble bee pollen basket. Environmental DNA, 2021, 3, 669-680.	3.1	8
5	The direct and indirect effects of extreme climate events on insects. Science of the Total Environment, 2021, 769, 145161.	3.9	34
6	Reproductive trait differences drive offspring production in urban cavityâ€nesting bees and wasps. Ecology and Evolution, 2021, 11, 9932-9948.	0.8	3
7	Invasion theory as a management tool for increasing native biodiversity in urban ecosystems. Journal of Applied Ecology, 2021, 58, 2394-2403.	1.9	4
8	The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. Current Opinion in Insect Science, 2021, 46, 43-49.	2.2	28
9	Urbanization and plant invasion alter the structure of litter microarthropod communities. Journal of Animal Ecology, 2020, 89, 2496-2507.	1.3	14
10	Designing wildlife-inclusive cities that support human-animal co-existence. Landscape and Urban Planning, 2020, 200, 103817.	3. 4	83
11	The contribution of constructed green infrastructure to urban biodiversity: A synthesis and metaâ€analysis. Journal of Applied Ecology, 2019, 56, 2131-2143.	1.9	110
12	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	1.5	161
13	Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. Science of the Total Environment, 2018, 628-629, 1017-1026.	3.9	40
14	Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evolutionary Applications, 2018, 11, 2014-2024.	1.5	21
15	Inter-annual thermoregulation of extensive green roofs in warm and cool seasons: Plant selection matters. Ecological Engineering, 2018, 123, 10-18.	1.6	10
16	The Green Roof Microbiome: Improving Plant Survival for Ecosystem Service Delivery. Frontiers in Ecology and Evolution, 2018, 6, .	1,1	36
17	The Necessity of Multitrophic Approaches in Community Ecology. Trends in Ecology and Evolution, 2018, 33, 754-764.	4.2	105
18	Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 2017, 15, 189-196.	1.9	656

#	Article	IF	Citations
19	Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions, 2017, 19, 3461-3469.	1.2	190
20	Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biological Invasions, 2017, 19, 3489-3503.	1.2	117
21	Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park. Ecology and Evolution, 2017, 7, 8456-8462.	0.8	19
22	Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. BioScience, 2017, 67, 799-807.	2.2	406
23	Cavity-nest boxes for solitary bees: a century of design and research. Apidologie, 2017, 48, 311-327.	0.9	65
24	Questioning public perception, conservation policy, and recovery actions for honeybees in North America. Conservation Biology, 2017, 31, 1202-1204.	2.4	48
25	Air temperature cooling by extensive green roofs in Toronto Canada. Ecological Engineering, 2016, 95, 36-42.	1.6	56
26	DNA barcoding to identify leaf preference of leafcutting bees. Royal Society Open Science, 2016, 3, 150623.	1.1	26
27	The Bees among Us: Modelling Occupancy of Solitary Bees. PLoS ONE, 2016, 11, e0164764.	1.1	14
28	â€~Bee Hotels' as Tools for Native Pollinator Conservation: A Premature Verdict?. PLoS ONE, 2015, 10, e0122126.	1.1	97
29	Exotics on exotics: Pollen analysis of urban bees visiting Sedum on a green roof. Urban Ecosystems, 2015, 18, 419-430.	1.1	56
30	Invertebrates on Green Roofs. Ecological Studies, 2015, , 333-355.	0.4	24
31	Bee Species-Specific Nesting Material Attracts a Generalist Parasitoid: Implications for Co-occurring Bees in Nest Box Enhancements. Environmental Entomology, 2014, 43, 1027-1033.	0.7	13
32	FORUM: Do green roofs help urban biodiversity conservation?. Journal of Applied Ecology, 2014, 51, 1643-1649.	1.9	196
33	Decoupling factors affecting plant diversity and cover on extensive green roofs. Journal of Environmental Management, 2013, 130, 297-305.	3.8	68
34	Bees collect polyurethane and polyethylene plastics as novel nest materials. Ecosphere, 2013, 4, 1-6.	1.0	36
35	Performance of dryland and wetland plant species on extensive green roofs. Annals of Botany, 2011, 107, 671-679.	1.4	65
36	Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosystems, 2011, 14, 225-241.	1.1	133

#	Article	IF	CITATIONS
37	Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecological Engineering, 2011, 37, 407-417.	1.6	196
38	Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions. PLoS ONE, 2010, 5, e9677.	1.1	263