
Guy Tanentzapf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3565296/publications.pdf Version: 2024-02-01

CUV TANENTZADE

#	Article	IF	CITATIONS
1	A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Current Biology, 2021, 31, 4697-4712.e6.	1.8	18
2	Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. ELife, 2021, 10, .	2.8	5
3	Integrins Modulate Extracellular Matrix Organization to Control Cell Signaling during Hematopoiesis. Current Biology, 2020, 30, 3316-3329.e5.	1.8	25
4	Precise coordination of cell-ECM adhesion is essential for efficient melanoblast migration during development. Development (Cambridge), 2020, 147, .	1.2	11
5	A cargo model of yolk syncytial nuclear migration during zebrafish epiboly. Development (Cambridge), 2019, 146, .	1.2	10
6	Septate junction components control <i>Drosophila</i> hematopoiesis through the Hippo pathway. Development (Cambridge), 2019, 146, .	1.2	16
7	Dynamic protein hydrogels with reversibly tunable stiffness regulate human lung fibroblast spreading reversibly. Chemical Communications, 2019, 55, 5235-5238.	2.2	33
8	Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. Journal of Cell Science, 2018, 131, .	1.2	28
9	Talin Autoinhibition Regulates Cell-ECM Adhesion Dynamics and Wound Healing InÂVivo. Cell Reports, 2018, 25, 2401-2416.e5.	2.9	34
10	Cell–cell and cell–extracellular matrix adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. Molecular Biology of the Cell, 2017, 28, 1301-1310.	0.9	47
11	Identification of genetic networks that act in the somatic cells of the testis to mediate the developmental program of spermatogenesis. PLoS Genetics, 2017, 13, e1007026.	1.5	27
12	Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation. ELife, 2017, 6, .	2.8	31
13	Basal Cell-Extracellular Matrix Adhesion Regulates Force Transmission during Tissue Morphogenesis. Developmental Cell, 2016, 39, 611-625.	3.1	52
14	Occluding Junctions Maintain Stem Cell Niche Homeostasis in the Fly Testes. Current Biology, 2016, 26, 2492-2499.	1.8	21
15	<i>In vivo</i> regulation of integrin turnover by outside-in activation. Journal of Cell Science, 2016, 129, 2912-24.	1.2	13
16	In vivo regulation of integrin turnover by outside-in activation. Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	0
17	Bi-directional gap junction-mediated Soma-Germline communication is essential for spermatogenesis. Development (Cambridge), 2015, 142, 2598-609.	1.2	37
18	In vivo quantitative analysis of Talin turnover in response to force. Molecular Biology of the Cell, 2015, 26, 4149-4162.	0.9	21

GUY TANENTZAPF

#	Article	IF	CITATIONS
19	A somatic permeability barrier around the germline is essential for <i>Drosophila</i> spermatogenesis. Development (Cambridge), 2015, 142, 268-81.	1.2	55
20	Bi-directional gap junction-mediated soma-germline communication is essential for spermatogenesis. Journal of Cell Science, 2015, 128, e1.1-e1.1.	1.2	0
21	The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering. PLoS Genetics, 2014, 10, e1004756.	1.5	27
22	Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nature Communications, 2014, 5, 5511.	5.8	199
23	The systematic identification of cytoskeletal genes required for Drosophila melanogaster muscle maintenance. Scientific Data, 2014, 1, 140002.	2.4	7
24	An Ongoing Role for Structural Sarcomeric Components in Maintaining Drosophila melanogaster Muscle Function and Structure. PLoS ONE, 2014, 9, e99362.	1.1	19
25	Talin Autoinhibition Is Required for Morphogenesis. Current Biology, 2013, 23, 1825-1833.	1.8	43
26	Mechanical force regulates integrin turnover in Drosophila inÂvivo. Nature Cell Biology, 2012, 14, 935-943.	4.6	85
27	Zasp regulates integrin activation. Journal of Cell Science, 2012, 125, 5647-57.	1.2	17
28	Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Developmental Dynamics, 2011, 240, 36-51.	0.8	14
29	In vivo functional analysis reveals specific roles for the integrin-binding sites of talin. Journal of Cell Science, 2011, 124, 1844-1856.	1.2	28
30	Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance. PLoS Genetics, 2011, 7, e1001295.	1.5	66
31	Integrin-mediated adhesion and stem-cell-niche interactions. Cell and Tissue Research, 2010, 339, 121-130.	1.5	107
32	Analysis of integrin turnover in fly myotendinous junctions. Journal of Cell Science, 2010, 123, 939-946.	1.2	57
33	Integrin-mediated adhesion maintains sarcomeric integrity. Developmental Biology, 2010, 338, 15-27.	0.9	41
34	Distinct developmental roles for direct and indirect talin-mediated linkage to actin. Developmental Biology, 2010, 345, 64-77.	0.9	20
35	Crystal Structure of the Talin Integrin Binding Domain 2. Journal of Molecular Biology, 2009, 387, 787-793.	2.0	6
36	Integrin-dependent anchoring of a stem-cell niche. Nature Cell Biology, 2007, 9, 1413-1418.	4.6	196

GUY TANENTZAPF

#	Article	IF	CITATIONS
37	An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nature Cell Biology, 2006, 8, 601-606.	4.6	112
38	A New Family of Drosophila Balancer Chromosomes With a wâ^' dfd-GMR Yellow Fluorescent Protein Marker. Genetics, 2006, 174, 2255-2257.	1.2	80
39	Multiple factors contribute to integrin-talin interactions in vivo. Journal of Cell Science, 2006, 119, 1632-1644.	1.2	56
40	Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. Nature Cell Biology, 2005, 7, 510-516.	4.6	66
41	Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biology, 2003, 5, 46-52.	4.6	333
42	Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature, 2002, 416, 143-149.	13.7	397
43	Epithelial Cell Polarity and Cell Junctions inDrosophila. Annual Review of Genetics, 2001, 35, 747-784.	3.2	502
44	Apical, Lateral, and Basal Polarization Cues Contribute to the Development of the Follicular Epithelium during Drosophila Oogenesis. Journal of Cell Biology, 2000, 151, 891-904.	2.3	187